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Abstract

We study three generalizations of classical nonparametric, and location-
scale estimation problems.

First, we study the classical problem of deriving minimax rates for
density estimation over convex density classes. Our work extends known
results by demonstrating that the local metric entropy of the density
class always captures the exact (up to constants) minimax optimal rates
under such settings. Our bounds provide a unifying perspective across
both parametric and nonparametric convex density classes, under weaker
assumptions on the richness of the density class than previously considered.

Second, we consider a variation of classical isotonic regression, which
we term adversarial sign-corrupted isotonic (ASCI) regression. Here, the
adversary can corrupt the sign of the responses having full access to the true
response terms. We formalize ASCIFIT, a three-step estimation procedure
under this regime, and demonstrate its theoretical guarantees in the form
of sharp high probability upper bounds and minimax lower bounds.

Finally, we extend classical univariate uniform location-scale estimation
over an interval, to multivariate uniform location-scale estimation over gen-
eral convex bodies. Unlike the univariate setting, the observations are no
longer totally ordered, and previous estimation techniques prove insufficient
to account for the more refined geometry of the generating process. Under
fixed dimension, our proposed location estimators converge at an n

�1 rate.
Our minimax lower bounds justify the optimality of our estimators in terms
of the sample complexity. We also provide practical algorithms with prov-
able convergence rates for our estimators, over a wide class of convex bodies.

Keywords: density estimation, minimax, metric entropy, isotonic regres-
sion, location-scale estimation, uniform distribution, convex body.
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One

Introduction

The motivating theme of this thesis is to generalize three classical nonparametric,
and location-scale (parametric) estimation problems in statistics, and analyze
in detail their theoretical properties. Here, ‘classical’ is simply qualitatively
taken to mean those foundational canonical estimation problems that are found
in most modern statistical theory reference books, e.g., Lehmann and Casella
(1998); Wasserman (2004, 2006). Our main goal in analyzing such classical
problems is to shed new inferential insights on them, in an effort to drive new
research directions.

We aim to achieve this through two main perspectives. The first such
perspective is to develop multivariate generalizations of the given classical
univariate problem. Here, the dimension, d 2 N, is arbitrary but fixed, while
the sample size n, increases asymptotically. The second perspective involves
maintaining the classical (typically univariate) setting, but directly generalizing
it in a well-motivated manner. This is done by either considering an adversarial
perturbation of the generating process, or by simply weakening the assumptions
upon which estimation is performed for the given problem.

1.1 Organization of the thesis

This leads us to the specific structure and content of the thesis, which is split
into two parts, with each part then further subdivided into individual chap-
ters. Each part represents a generalized analysis of nonparametric estimation
(Part I), or (parametric) location-scale estimation (Part II) problems. Three
core problems are studied in this thesis, with the analysis of each problem
forming a separate chapter. Moreover, each chapter directly corresponds to a
released (or forthcoming) preprint of the same title. In particular Chapter 2
is based on Shrotriya and Neykov (2022a), Chapter 3 is based on Shrotriya
and Neykov (2022b), and finally Chapter 4 is derived from (the forthcoming
preprint) Shrotriya and Neykov (2022c). Importantly, we emphasize that each
of these three chapters represents work that is co-authored with Matey Neykov.
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1. introduction

The resulting Part-Chapter content layout of this thesis can be conveniently
summarized as follows.

Part I Nonparametric Estimation

Chapter 2 Revisiting Le Cam’s Equation: Exact Minimax Rates over Convex
Density Classes

Chapter 3 Adversarial Sign-Corrupted Isotonic Regression

Part II Location-Scale Estimation

Chapter 4 Uniform Location Estimation on Convex Bodies

1.2 Overview of the three core problems

Having described the Part-Chapter organization of our thesis as per Section 1.1,
we now briefly describe on the core questions of interest studied in each chapter.
We intentionally formalize the underlying generating processes driving each
chapter, so that they are made precise up front. Our main goal is to concisely
provide our driving motivation behind their study in this thesis. More detailed
historical context can be found in the respective chapters in which these specific
problems are studied. Before describing the detailed problem settings for
Chapters 2 to 4, we note that each of these chapters can be (largely) read in a
standalone manner, though they are unified by the aforementioned motivating
theme of this thesis.

Part I Nonparametric Estimation

We begin with Chapter 2, where we study minimax density estimation
over convex density classes. To set the stage, suppose we have constants
0 < ↵ < � <1, for some fixed dimension p 2 N, and a common known (Borel
measurable) compact support set B ✓ Rp (with positive measure). We then
define the ambient class of (probability) density functions, F [↵,�]

B
, as follows:

F [↵,�]
B

:=

⇢
f : B ! [↵,�]

����
Z

B

f dµ = 1, f measurable
�
, (1.1)

where µ is the dominating finite measure on B. We always take µ to be a
(normalized) probability measure on B. Now, given this general bounded
density class, we consider n observations, (Xi)

n

i=1, where each observation Xi

2
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is generated from the following model:

Xi

i.i.d.⇠ f (1.2)

s.t. f 2 F ⇢ F [↵,�]
B

(1.3)
and F is a convex set (1.4)

This now leads to the following core questions of interest.

Core questions: Suppose that we observe (Xi)
n

i=1, gener-
ated according to (1.2)-(1.4). Can we propose a universal
estimator for f , and derive the exact (up to constants) squared
L2-minimax rate of estimation, in expectation?

Such a problem set up has been explicitly studied in the seminal work of
Yang and Barron (1999). However, our focus here is to extend these results by
establishing exact minimax rates over general (i.e., both nonparametric and
parametric) convex density classes. We also hope to generalize these known
results by considering weaker assumptions on the underlying convex density
class F .

Moving onto Chapter 3, our study here begins with the following generating
process. We consider n univariate observations, (Ri)

n

i=1, where each observation
Ri is generated from the following model:

Ri = ⇠i(µi + "i) (1.5)
s.t. 0 < ⌘  µ1  µ2  . . .  µn (1.6)

and "i
i.i.d.⇠ N

�
0,�

2
�

(1.7)
and ⇠i 2 {�1, 1} . (1.8)

We note that the constant ⌘ > 0 is a known constant in the generating process.
We refer to the generating process described by (1.5)-(1.8), as adversarial

sign-corrupted isotonic (ASCI) regression. This represents a partial general-
ization of the classical isotonic regression setup. Here, the classical isotonic
regression responses, µi + "i in Equation (1.5), are sign-corrupted in a manner
chosen by an adversary, as captured by the multiplicative ⇠i terms. Given this
ASCI setting, we consider the following core questions of interest.

3



1. introduction

Core questions: Under ASCI regression setup, can we find
a computationally efficient estimator for µ = (µ1, . . . , µn)

>,
and demonstrate its precise (non-asymptotic) statistical opti-
mality?

To the best of our knowledge, this is the first such appearance of this
variation of classical isotonic regression. Our study is driven by three factors,
which we believe make the problem challenging and thus interesting. First,
the sign-corruptions can be chosen adversarially in a way that results in a
strong dependence between the original isotonic responses. As such, any ASCI
estimator must be able to handle arbitrary dependence structure between
the sign-corrupted responses. Second, the sign-corruptions are in a sense
‘extreme’ in that the sign-corruptions fundamentally attack the monotonicity
constraint directly. It is this convex monotone constraint which classical isotonic
estimators, i.e., PAVA, are designed to exploit. Finally, we show that the ASCI
setting contains interesting non-trivial special cases, for which naively applying
typical least squares estimation techniques will prove insufficient.

Part II Location-scale estimation

Finally, in Chapter 4 we study multivariate uniform location estimation on
convex bodies. We formalize the generating process as follows. Let d � 1 be
a fixed positive integer. Now, let K ⇢ Rd also be a fixed convex body, i.e., a
compact, convex set, with a non-empty interior. We assume that both d,K

are known to the observer, and that centroid (K) = 0 2 Rd. Now, let v 2 Rd

be a fixed but unknown location parameter. We then consider n observations,
(Yi)

n

i=1, where each observation Yi 2 Rd is generated from the following model:

Yi

a.s.
= v + �Xi (1.9)

s.t. Xi

i.i.d.⇠ Unif[K] (1.10)
and � > 0 (1.11)

This generating process described formally by (1.9)-(1.11) is known as the
multivariate uniform location-scale model. In Equation (1.11), we consider
both scaling regimes in which the fixed scale parameter � is either known or
unknown to the observer. In the latter case � is treated as a nuisance parameter.
The multivariate uniform location-scale model is our proposed generalization
of the well-studied case of univariate uniform location-scale estimation.

Given the above, we consider the following natural core questions of interest
for multivariate uniform location estimation.
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Core questions: How can one derive statistically optimal
location estimators (i.e., for v), and understand their ge-
ometry in this multivariate setting under both known and
unknown scaling regimes (i.e., for �)? What are practical
algorithms to compute such estimators under a wide variety
of use-cases with convergence rate guarantees?

Despite the univariate uniform location-scale estimation being a well studied
estimation problem, to the best of our knowledge our proposed multivariate
generalization of uniform location-scale estimation has not been explicitly
studied previously. A particular emphasis of this work is to consider a wide
variety of location estimators under this setting and understand the statistical
and computational and trade-offs that arise in the estimation process.

1.3 A note on stylistic conventions used in this thesis

We note that the thesis adopts three stylistic conventions which we state
up front. First, since each chapter can be read in a standalone manner, we
append the corresponding chapter appendix materials directly after the main
chapter body. Second, for each of the appendix proofs of statements from the
main chapter body, we first restate verbatim the relevant statement before
presenting its proof. Finally, there may be slight notational differences between
the chapters. To ensure notational clarity for a given chapter, we provide a
separate notation section, and also a corresponding notational summary table
at the start of each chapter appendix. All of these conventions are designed to
improve the flow of readability.
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Nonparametric estimation
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Two

Revisiting Le Cam’s Equation: Exact
Minimax Rates over Convex Density

Classes

Abstract: We study the classical problem of deriving minimax rates for
density estimation over convex density classes. Building on the pioneer-
ing work of Le Cam (1973); Birgé (1983); Birgé (1986); Wong and Shen
(1995); Yang and Barron (1999), we determine the exact (up to constants)
minimax rate over any convex density class. This work thus extends these
known results by demonstrating that the local metric entropy of the den-
sity class always captures the minimax optimal rates under such settings.
Our bounds provide a unifying perspective across both parametric and
nonparametric convex density classes, under weaker assumptions on the
richness of the density class than previously considered. Our proposed
‘multistage sieve’ MLE applies to any such convex density class. We apply
our risk bounds to rederive known minimax rates including bounded total
variation, and Lipschitz density classes. We further illustrate the utility of
the result by deriving upper bounds for less studied classes, e.g., convex
mixture of densities.

The work in this chapter was done jointly with Matey Neykov. It is
based on a preprint with the title “Revisiting Le Cam’s Equation: Exact
Minimax Rates over Convex Density Classes”.
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2. revisiting le cam’s equation: exact minimax rates over convex

density classes

2.1 Introduction

It is well known that (global) metric entropy often times determines the minimax
rates for density estimation. Specifically, the following equation sometimes
informally referred to as the ‘Le Cam equation’ is used to heuristically determine
the minimax rate of convergence

logM
glo

F (") ⇣ n"
2
,

where n is the sample size, logM
glo

F (") is the global metric entropy of the
density set F at a Hellinger distance " (see Definition 2.9), and "2 determines
the order of the minimax rate. In this paper we complement these known results,
by establishing that local metric entropy always determines the minimax rate
for convex density classes, where the densities are assumed to be (uniformly)
bounded from above and below.

In detail, under the setting of density estimation just described, we suggest
a small revision to the Le Cam equation: namely, change the global entropy to
local entropy, and the Hellinger metric to the L2-metric. Furthermore, the same
result holds when the convex density class contains densities only (uniformly)
bounded from above, and a single density which is bounded from below. Unlike
previous known results, our result unites minimax density estimation under both
parametric and nonparametric convex density classes. A further contribution
is that our proposed ‘multistage sieve’ maximum likelihood estimator (MLE)
achieves these bounds regardless of the density class (as long as it is convex).

We will now formally describe the setting we consider. To that end, we
first define a general class of bounded densities, i.e., F [↵,�]

B
. Later, we will

assume that the true density of interest belongs to a known convex subset of
this general ambient density class.

Definition 2.1 (Ambient density class F [↵,�]
B

). Given constants 0 < ↵ < � <

1, for some fixed dimension p 2 N, and a common known (Borel measurable)
compact support set B ✓ Rp (with positive measure), we then define the class
of density functions, F [↵,�]

B
, as follows:

F [↵,�]
B

:=

⇢
f : B ! [↵,�]

����
Z

B

f dµ = 1, f measurable
�
, (2.1)

where µ is the dominating finite measure on B. We always take µ to be a
(normalized) probability measure on B.

10



2.1. Introduction

Furthermore, we can endow F [↵,�]
B

with the L2-metric. That is, for any two
densities f, g 2 F [↵,�]

B
, we denote the L2-metric between them to be

kf � gk2 :=
✓Z

B

(f � g)
2
dµ

◆ 1
2

. (2.2)

Remark 2.2. Qualitatively, we have that F [↵,�]
B

is the class of all densities that
are uniformly ↵-lower bounded and �-upper bounded, on a common compact
support B ✓ Rp. Furthermore, Definition 2.1 implies that F [↵,�]

B
forms a convex

set, and that the metric space (F [↵,�]
B

, k · k2) is complete, bounded, but may
not be totally bounded1.

In this paper we will focus on the scenario where it is known that the true
density f 2 F ⇢ F [↵,�]

B
, where F is a known convex set. The set F represents

our knowledge on the true density, before observing any data. With these
mathematical preliminaries, we formalize our core density estimation problem
of interest as follows.

Core problem: Suppose that we observe n observations
X := (X1, . . . , Xn)

> i.i.d.⇠ f , for some (fixed but unknown)
f 2 F . Here F ⇢ F [↵,�]

B
is a convex set, which is known to

the observer. Can we propose a universal estimator for f ,
and derive the exact (up to constants) squared L2-minimax
rate of estimation, in expectation?

For convenience, we can illustrate the generating process for a univariate
example of our density estimation problem of interest in Figure 2.1. It will
serve as a useful conceptual guide to later help visualize our proposed estimator
over such general convex class of densities F .

Now, without further ado, we will informally state our main result as a
direct affirmative answer to our core question of interest. Namely, there does
exist a likelihood-based estimator (one can think of it as a multistage sieve
MLE), i.e., ⌫⇤(X), which achieves the following rate of estimation error

sup

f2F
Ek⌫⇤(X)� fk22 . "

⇤2 ^ diam2(F)
2
. (2.3)

1These fundamental (and additional) analytic properties of F [↵,�]
B

are formally justified
in Section 2.A.2.
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density classes

Figure 2.1: Illustrative generating process for a univariate density f 2 F ⇢ F [↵,�]
B .

Here "⇤ := sup{" : n"2  logM
loc

F (", c)}, with logM
loc

F (", c) being the L2-local
metric entropy of F (see Definition 2.10). The quantity diam2(F), refers to the
L2-diameter of F , which is finite by the boundedness of F [↵,�]

B
in our setting.

In addition, the rate above is minimax optimal, as there is a matching (up to
constants) lower bound.
Remark 2.3. We will later see that we can largely relax the ↵-lower boundedness
condition on F . That is, the results we are about to derive can be readily
generalized to convex subsets F ⇢ F [0,�]

B
. This is so as long as the class F

contains a single density which is bounded away from 0.
Next, we turn our attention to reviewing some relevant literature.

2.1.1 Relevant Literature

Classical work

As noted, density estimation is a classical statistical estimation problem
with a rich history. Lively accounts of the key references, particularly for
nonparametric density estimation as relevant to our setting, are already covered
in Yang and Barron (1999, Section 1) and Bilodeau et al. (2021, Section 6.1).
We similarly begin with a brief panoramic overview of these references in
regard to minimax risk bounds for density estimation, before comparing and
contrasting the results from the most relevant references to our work.

In terms of minimax lower bounds on density estimation, Boyd and Steele
(1978) prove a fundamental n�1 rate in the mean integrated p

th power error
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(with p � 1), for any arbitrary density estimator. Such generalized lower bounds
on density estimation were also further studied in Devroye (1983). In the case of
density estimation over classes with more assumed structure (e.g., smoothness,
or regularity assumptions) minimax lower bounds have been developed based
on hypothesis testing approaches coupled with information-theoretic techniques.
We now provide brief highlights of such key works in this direction.

In Bretagnolle and Huber (1979), the authors derive sharp lower bounds
for Sobolev smooth densities in Rd (d 2 N), with risk measured with respect
to a power of the Lq-metric (q � 1). In Birgé (1986), sharp risk bounds
for more general classes of such smooth families were provided using metric
entropy based methods, with an emphasis on the Hellinger loss. The work of
Efrŏımovich and Pinsker (1982) provided precise (asymptotic) analysis for an
ellipsoidal class of densities in the L2-metric. Across a wide-ranging series of
related and collaborative efforts Has’minskĭı (1978); Ibragimov and Has’minskĭı
(1977, 1978); Ibragimov and Khas’minskij (1980) used Fano’s inequality type
arguments to establish lower bounds over a variety of density estimation settings.
These range from deriving lower bounds on nonparametric density estimation
in the uniform metric, to minimax risk bounds for the Gaussian white noise
model, for example. The authors also develop metric entropy based techniques
in Has’minskĭı and Ibragimov (1990) to derive minimax lower bounds for a wide
variety of density classes defined on Rd (d 2 N), in Lq-loss (q � 1). Numerous
applications of optimal lower bounds using both Assouad’s and Fano’s lemma
arguments for densities on a compact support, are demonstrated in (Yu, 1997,
Section 29.3). Later Yang and Barron (1999) demonstrated that global metric
entropy bounds capture minimax risk for sufficiently rich density classes over a
common compact support. Classical reference texts on minimax lower bound
techniques with an emphasis on nonparametric density estimation include
Devroye (1987); Devroye and Györfi (1985); Le Cam (1986). More modern
such references include Tsybakov (2009) and Wainwright (2019, Chapter 15).
The latter in particular, also incorporates metric entropy based lower bound
techniques.

In addition, there is a large body of work in deriving upper bounds for spe-
cific density estimators using metric entropy methods. This includes Yatracos
(1985); Barron and Cover (1991), who employ the minimum distance principle
to derive density estimators and their metric entropy-based upper bounds in
the Hellinger and L1-metric, respectively. In a similar spirit to Birgé (1983);
Birgé (1986), van de Geer (1993) is also concerned with density estimation
using Hellinger loss. However, its focus is to use techniques from empirical
process theory in order to specifically establish the Hellinger consistency of the
nonparametric MLE, over convex density classes. Upper bounds for density
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estimation based on the ‘sieve’ MLE technique is studied in Wong and Shen
(1995). Recall that a ‘sieve’ estimator effectively estimates the parameter of
interest via an optimization procedure (e.g., maximum likelihood) over a con-
strained subset of the parameter space (Grenander, 1981, Chapter 8). In Birgé
and Massart (1993a) the authors study ‘minimum contrast estimators’ (MCEs),
which include the MLE, least squares estimators (LSEs) etc., and apply them
to density estimation. This is further developed in Birgé and Massart (1998)
where they analyze convergence of MCEs using sieve-based approaches.

Comparison to our work

By stating our main result early in the introduction, we now turn to
contrasting it with the most relevant results in the literature. These include
both the aforementioned classical references, and more recent work on convex
density estimation, which have most directly inspired our efforts in this work.

First we would like to comment on the closely related landmark papers
(Le Cam, 1973; Birgé, 1983; Birgé, 1986). These works consider very abstract
settings and show upper bounds based on Hellinger ball testing. Although
widely believed that they do, whether these results lead to bounds that are
minimax optimal is unclear. Moreover, their estimator is quite involved and non-
constructive. In contrast, in this paper we offer a simple to state, constructive
multistage sieve MLE type of estimator, which is provably minimax optimal
over any convex density class F . A crucial difference is that we metrize the
space F with the L2-metric as we mentioned above. Even though in our
instance the two distances are equivalent, in contrast to the Hellinger distance,
the "-local metric entropy of the convex density class in the L2-metric can be
shown to be monotonic in ". This key observation enables us to match the
upper and lower bounds exactly.

Next, we will compare our work with the celebrated paper of Yang and
Barron (1999), who inspect a very similar problem. Yang and Barron (1999)
demonstrate a lower and upper bound which need not match in general but do
match under certain sufficient conditions. Notably their bounds involve only
quantities depending on the global entropies of the set F (which is also assumed
to be convex for some results of Yang and Barron (1999)). This is convenient as
often times global metric entropy is easier to work with compared to local metric
entropy, however under Yang and Barron (1999)’s sufficient condition it can be
seen that the two notions are equivalent. Hence, our work can be thought of as
removing the sufficient condition requirement from Yang and Barron (1999) and
also unifying parametric and nonparametric density estimation problems (over
convex classes) for which one typically needs to use different tools to obtain
the accurate rates. Finally we would like to mention Wong and Shen (1995).
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In that paper the authors propose a sieve MLE estimator and demonstrate
that it is nearly minimax optimal under certain conditions. Our estimator is
not the same as the one considered by Wong and Shen (1995), and we can
provably match the minimax rate over whatever be the convex set F . A notable
difference is that Wong and Shen (1995) work with the Hellinger metric and KL
divergence, which although equivalent to L2-metric in our problem, are actually
less practical in terms of matching the bounds exactly as we explained above.
We will now turn our attention to reviewing some further relevant literature.
Recent work

Our estimator and proof techniques thereof, are inspired by the recent work
of Neykov (2022) on the Gaussian sequence model. We would like to stress on the
fact that the sequence model is a very distinct problem from density estimation.
In particular, our underlying metric space of interest is (F , k · k2), as compared
to2

(Rn
, k · k2) for the sequence model. Both of these metric spaces differ vastly

from each other in their underlying geometric structure. Furthermore, unlike
our setting, the sequence model contains additional Gaussian information on the
underlying generating process, which can be directly exploited for estimation
purposes. As such, given that Neykov (2022) provides a guiding template
for our analysis, some resulting structural similarities to their work are to be
expected. However, all corresponding proofs, and estimators thereof, have to
be non-trivially adapted to our nonparametric density estimation setting. A
notable example of such required modifications, is that our estimator presented
in this paper does not use proximity in Euclidean norm, but is a likelihood-based
estimator.

We additionally note that density estimation in both abstract and more
concrete settings, continues to be an active area of research. It is not feasible
to detail such a large and growing body of references. However, we provide a
selective overview of some interesting recent directions in density estimation,
to simply indicate the diversity of the research efforts thereof. For example,
Cleanthous et al. (2020); Baldi et al. (2009) study convergence properties of
density estimators using wavelet-based methods. The papers Goldenshluger
and Lepski (2014); Efromovich (2008); Rigollet (2006); Rigollet and Tsybakov
(2007); Samarov and Tsybakov (2007); Birgé (2014) study adaptive minimax
density estimation on Rd (d � 1) under Lp-loss (p � 1). Here, ‘adaptive’
refers to the fact that the density class is defined by an unknown tuning
hyperparameter, which must be explicitly accounted for during the estimation
process. Recently Wang and Marzouk (2022) used techniques from optimal
transport to study the convergence properties of various nonparametric density

2Note that k · k2 here is the Euclidean metric on Rn.
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estimators. Interestingly, Bilodeau et al. (2021) applied empirical (metric)
entropy methods to establish minimax optimal rates in the adjacent setting
of conditional density estimation. Although these works do not directly study
our core problem of interest, we note that they represent new and important
perspectives on classical minimax density estimation, and related problems.

2.1.2 Notation

We outline some commonly used notation here. We use a _ b and a ^ b for
the max and min of two numbers {a, b}, respectively. Throughout the paper
k · k2 denotes the L2-metric in F . Constants may change values from line to
line. For an integer m 2 N, we use the shorthand [m] := {1, . . . ,m}. We use
B2(✓, r) to denote a closed L2-ball centered at the point ✓ with radius r. We
use . and & to mean  and � up to absolute (positive) constant factors, and
for two sequences an and bn we write an ⇣ bn if both an . bn and an & bn

hold. Throughout the paper we use log to denote the natural logarithm, or we
specify the base explicitly otherwise. Our use of {↵,�} is only used to refer
to the constants in Definition 2.1, of F [↵,�]

B
(and thus F). We will introduce

additional section-specific notation as needed.

2.1.3 Organization

The rest of this paper is organized as follows. In Section 2.2 we prove risk
bounds for our underlying setting. We first establish the key topological
equivalence between the L2-metric and the Kullback-Leibler divergence in
F [↵,�]
B

. We then proceed to derive minimax lower bounds for our setting in
Section 2.2.1, introducing additional relevant mathematical background as
needed, e.g., local metric entropy. In Section 2.2.2 we define our likelihood-
based estimator, and provide intuition behind its construction. We then derive
its (matching) minimax risk upper bound. In Section 2.3, we apply our results
to specific examples of commonly used convex density classes. We then conclude
in Section 2.4 by summarizing our results, and discuss some future research
directions.

2.2 Minimax Lower and Upper Bounds

Before establishing our main results, we establish a key technical lemma which
drives much of the geometric arguments in our analysis to follow. Note that
for any two densities f, g 2 F [↵,�]

B
, the KL-divergence between them is defined

to be
dKL(f ||g) :=

Z

B

f log

✓
f

g

◆
dµ =: Ef log

✓
f(X)

g(X)

◆
, (2.4)
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where X ⇠ f in (2.4).

Remark 2.4. We observe that dKL(f ||g) is well-defined in (2.4) for our setting,
since infx2B g(x) � ↵ > 0, by Definition 2.1. We further emphasize that
KL-divergence is not valid metric in general, since it is not symmetric in its
arguments.

The crucial fact in the risk bounds we will soon derive, is the ‘topological
equivalence’ of the L2-metric and KL-divergence, on the density class F [↵,�]

B
.

Since it is hard to find a concrete reference for this folklore fact, we formalize
this equivalence for our setting in Lemma 2.5.

Lemma 2.5 (KL-L2 equivalence on F [↵,�]
B

). For each pair of densities f, g 2
F [↵,�]
B

, the following relationship holds:

c(↵,�)kf � gk22  dKL(f ||g)  (1/↵)kf � gk22, (2.5)

where we denote c(↵,�) :=
h(�/↵)
�

> 0. Here h : (0,1)! R is defined to be

h(�) :=

(
��1�log �
(��1)2 if � 2 (0,1) \ {1}

1
2 = limx!1

x�1�log x
(x�1)2 if � = 1,

(2.6)

and is positive over its entire support. It is also easily seen that on F [↵,�]
B

, dKL
(and hence the L2-metric) is also equivalent to the Hellinger metric. Further-
more, these properties are also inherited by F ⇢ F [↵,�]

B
, which is our density

class of interest.

Remark 2.6. We note that both the upper and lower bounds in (2.5) are stated
without proof and without tracking constants in Klemelä (2009, Lemma 11.6).
We formally prove this claim in Section 2.A. Importantly, the validity of (2.5)
relies on the assumption of the boundedness of the densities, which holds in
our setting.

2.2.1 Minimax Lower Bound

We will first establish a lower bound. For completeness, we need to introduce
some additional relevant background and notation. We start by stating Fano’s
inequality for our convex density class, F (see Tsybakov, 2009, Lemma 2.10).

Lemma 2.7 (Fano’s inequality for F). Let {f1
, . . . , f

m} ⇢ F be a collection of
"-separated densities (i.e. kf i � f

jk2 > " for i 6= j), in the L2-metric. Suppose
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J is uniformly distributed over the index set [m], and (Xi|J = j)
i.i.d.⇠ f

j for
each i 2 [n]. Then

inf
b⌫
sup

f

Ekb⌫(X)� fk22 �
"
2

4

✓
1� nI(X1; J) + log 2

logm

◆
.

In the above I(X1; J) :=
1
m

P
m

j=1 dKL

�
f
j ||f̄

�
, where f̄ =

1
m

P
m

j=1 f
j is the

mutual information between X1 and the randomly sampled index J . Further,
the infimum is taken over all measurable functions of the data. Next, we define
the important notion of a packing set for F (see Section 5.2 Wainwright, 2019,
e.g., for more details).

Definition 2.8 (Packing sets and packing numbers of F in the L2-metric).
Given any " > 0, an "-packing set of F in the L2-metric, is a set {f1

, . . . , f
m} ⇢

F of "-separated densities (i.e., kf i� f
jk2 > " for i 6= j) in the L2-metric. The

corresponding "-packing number, denoted by M(",F), is the cardinality of the
largest (maximal) "-packing of F . We refer to logM

glo

F (") := logM(",F) as
the global metric entropy of F .

Remark 2.9. Note that we are not assuming here that F is totally bounded,
hence some (or perhaps all) of the packing numbers may be infinite; this however
does not cause a problem in what follows. Henceforth, all packing sets (or
packing numbers) of F , will be assumed to be with reference to the L2-metric,
unless stated otherwise. We will use the standard fact that a "-maximal packing
of F , is also a "-covering set of F .

We will now define the notion of local metric entropy, which will play a key
role in the development of our risk bounds.

Definition 2.10 (Local metric entropy of F). Let c > 0 be fixed, and ✓ 2 F
be an arbitrary point. Consider the set3 F \B2(✓, "). Let M("/c,F \B2(✓, "))

denote the "/c-packing number of F \B2(✓, "), in the L2-metric. Let

M
loc

F (", c) := sup

✓2F
M("/c,F \B2(✓, ")) =: sup

✓2F
M

glo

F\B2(✓,")
("/c) .

We refer to logM
loc

F (", c) as the local metric entropy of F .

We show the following minimax lower bound for our convex density es-
timation setting over F . It is a direct consequence of Fano’s inequality per
Lemma 2.7.

3Observe that this set may also fail to be totally bounded, since while the ball B2(✓, ") is
a bounded set, it is not totally bounded.
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Lemma 2.11 (Minimax lower bound). Let c > 0 be fixed, and independent of
the data samples X. Then the minimax rate satisfies

inf
b⌫

sup

f2F
Efkb⌫(X)� fk22 �

"
2

8c2
,

if " satisfies logM
loc

F (", c) > 2n"
2
/↵+ 2 log 2.

2.2.2 Upper Bound

We now turn our attention to the upper bound. We note that our universal
estimator over F , will be a likelihood-based estimator for f . As such for any
two densities g, g

0 2 F , we will routinely work with the log-likelihood difference
for the n observed samples X := (X1, . . . , Xn)

> i.i.d.⇠ f 2 F . We will denote
this by

 (g, g
0
,X) := log

 
nY

i=1

g(Xi)

g0(Xi)

!
=

nX

i=1

log

✓
g(Xi)

g0(Xi)

◆
=

nX

i=1

log g(Xi)�
nX

i=1

log g
0
(Xi).

(2.7)

Remark 2.12. We note that the log-likelihood difference  (g, g0,X) in (2.7),
is well-defined. This follows since for each i 2 [n], the individual random
variables log g(Xi)/g

0
(Xi) are well-defined (as ↵ > 0), and bounded. That is,

�1 < log↵/�  log g(Xi)/g
0
(Xi)  log �/↵ <1, for each i 2 [n].

We will use the log-likelihood difference to help us decide which of the two
densities is “more” correct, given the observed data samples X. Given this, we
will first need a concentration result on the density log-likelihood difference.
We do this by establishing the following lemma.

Lemma 2.13 (Log-likelihood difference concentration in F). Let � > 0 be
arbitrary, and let X := (X1, . . . , Xn)

> i.i.d.⇠ f 2 F , be the n observed samples.
Suppose we are trying to distinguish between two densities g, g

0 2 F . Let
 (g, g

0
,X) denote their log-likelihood difference per (2.7). We then have

sup

g,g
0 : kg�g

0k2�C�,

kg0�fk2�

P( (g, g0,X) > 0)  exp
�
�nL(↵,�, C)�

2
�

(2.8)

where

C > 1 +

p
1/(↵c(↵,�)) (2.9)

L(↵,�, C) :=

⇣p
c(↵,�) (C � 1)�

p
1/↵

⌘2

2
�
2K(↵,�) +

2
3 log �/↵

 , (2.10)
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with K(↵,�) := �/(↵
2
c(↵,�)), and c(↵,�) is as defined in Lemma 2.5. In the

above P is taken with respect to the true density function f , i.e., P = Pf .

From Lemma 2.13, we derive a key concentration result concerning a packing
set in F , as summarized in Lemma 2.14. The relevance of such a result will
become clearer later, when we introduce our sieve-based MLE for f . Our sieve
estimator will be constructed using packing sets of F , thus Lemma 2.14 will be
an important tool to enable us to handle the concentration properties of our
estimator.

Lemma 2.14 (Maximum likelihood concentration in F). Let � > 0 be arbitrary,
and let X := (X1, . . . , Xn)

> i.i.d.⇠ f 2 F , be the n observed samples. Suppose
further that we have a maximal �-packing set of F 0 ⇢ F , i.e., {g1, . . . , gm} ⇢ F 0

such that kgi � gjk2 > � for all i 6= j, and it is known that f 2 F 0. Now let
j
⇤ 2 [m], denote the index of a density whose likelihood is the largest. We then

have
P(kgj⇤ � fk2 > (C + 1)�)  m exp

�
�nL(↵,�, C)�

2
�
,

where C is assumed to satisfy (2.9), and L(↵,�, C) is defined as per (2.10).

Next we establish that the map " 7! logM
loc

F (", c) is non-increasing. This
lemma is made possible by the fact that the set F is convex by assumption,
and that we are using the L2-metric. This monotonicity property of the "-local
metric entropy in the L2-metric is a critical technical ingredient used in the
proofs establishing our upper bound.

Lemma 2.15 (Monotonicity of local metric entropy). The map " 7! logM
loc

F (", c)

is non-increasing.

We now turn our attention to describing our proposed likelihood-based
estimator, i.e., ⌫⇤(X), of f 2 F . In the discussion that follows we let d :=

diam2(F), which is finite by the boundedness of F . The estimator is directly
inspired by a recent construction used in Neykov (2022), who applied it to
the Gaussian sequence model. However, there the underlying space used is
(Rn

, k · k2), whereas in our case it is (F , k · k2), which has a vastly different
underlying geometric structure. Importantly since we are performing density
estimation, our proposed estimator uses a fundamentally different log-likelihood -
based selection criteria, compared to the projection-based sequence model
estimator in Neykov (2022). Although our estimator can also be described
constructively, it is not intended to be practically computable.
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Construction of the multistage sieve MLE, ⌫
⇤
(X), of f 2 F .

Step 1 Initialize inputs.

Let X := (X1, . . . , Xn)
> denote our n observed i.i.d. data samples. Fix

some sufficiently large c > 0, and then define C such that c := 2(C + 1).
Importantly, the constant c should be set without looking at the data
samples, i.e., independently of X.

Step 2 Construct a maximal packing set tree of depth J before
seeing the data.

Construct a tree of packing sets of depth J 2 N, which is independent of
the data samples X. Here, J is as defined in Theorem 2.19. The explicit
construction of such a packing set tree proceeds as follows. First, fix any
arbitrary point ⌥1 2 F , which is the root node, i.e., the first level of the
packing set tree. In the case where J = 1, the tree construction stops at
this single root node.

Assuming the (more interesting) case where J > 1, we then let d :=

diam (F), and construct a maximal d

2(C+1) -packing set of B2(⌥1, d)\F =

F . Denote this packing set by P⌥1 := {m1,m2,m3, . . . ,m|P⌥1 |}. The set
P⌥1 forms the children (densities) of our root node, that is the second
level of the treea. Now, for each density in P⌥1 , we again construct
a maximal packing set as follows. For example, taking the density
m3 2 P⌥1 , we construct a maximal d

4(C+1) -packing set of B2(m3, d/2)\F ,
which we denote as Pm3 := {m3,1,m3,2,m3,3, . . . ,m3,|Pm3 |}. Here, the
(finite) packing set Pm3 again forms the children of the node density
m3. Iterating this process over each density in P⌥1 , forms the complete
second level of the tree.

Now we can further iterate this process over each density in the sec-
ond level of the tree to construct the third level of the tree. For
example, taking the density m3,3, we construct a maximal d

8(C+1) -
packing set of B2(m3,3, d/4) \ F , which we denote as Pm3,3 :=

{m3,3,1,m3,3,2,m3,3,3, . . . ,m3,3|Pm3,3 |}, which forms the children of node
m3,3. This process is iterated so that for the k

th-level of the tree,
we construct d

2k(C+1)
-packing sets, with closed balls B2(·, d/2k�1

) \ F .
In particular the packing set tree is extended for each depth level
k 2 {2, 3, . . . , J � 1}. This process results in a maximal packing set tree
of depth J , as claimed.
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Step 3 Build a finite sequence of densities by traversing our

packing set tree.

Now, after observing our data sample X, we construct a finite sequence
of densities, i.e., ⌥ := (⌥k)

J

k=1, using our packing set tree construction
in Step 2. First, we initialize the first term of our sequence to ⌥1,
i.e., the root node already chosen in Step 2. If J = 1, then the
sequence ⌥ := (⌥1). Otherwise, if J > 1, we traverse down one level
of our packing set tree, and assign ⌥2 to be the density from P⌥1

which maximizes the log-likelihood given the data. That is, set ⌥2 :=

argmax⌫2P⌥1

P
n

i=1 log ⌫(Xi). Since P⌥1 is a finite set, this will be
exhausted for each such iteration in finitely many steps.

Moreover, we note that when assigning ⌥2, there may be ties in children
densities who all simultaneously maximize the log-likelihood. To break
ties, by convention, we always select the left-most child from our packing
set treeb. Once the ⌥2 is assigned from our packing set tree, once again
assign ⌥3 from its children by again maximizing the log-likelihood. Keep
iterating in this manner for each indexc

k 2 {2, 3, . . . , J}, and construct
the finite, i.e., terminating sequence ⌥.

Step 4 Output estimator as the J
th

-term of the sequence.

Finally, we note that the finite sequence ⌥ := (⌥k)
J

k=1 satisfiesd k⌥J �
⌥J 0k2  d

2J0�2 , for each pair of positive integers J
0
< J . Our multistage

sieve MLE, i.e., ⌫⇤(X), can be taken as the final term of this sequence.
That is ⌫⇤(X) := ⌥

J
. The estimator ⌫⇤(X) is readily understood by

comparinge Figure 2.2 with the qualitative description in Step 1-Step

4.
aBy convention, the children forming the packing set densities are arbitrarily

indexed in an increasing alphanumeric manner, from left child node to right child
node.

bThis selection rule thus effectively assigns the child density maximizing log-
likelihood with the smallest such alphanumeric index.

cNote that k here refers to index of the kth-term our sequence ⌥.
dWe will formally justify this in the appendix in Lemma 2.38.
eWe note that in Figure 2.2 if J = 1, the estimator would just output ⌥1.

In the case where J > 1, the maximal packing sets for each level of the tree
are illustrated on the left, and the corresponding constructed tree level is shown
on the right. In this instance the finite sequence of J densities is given by ⌥ =

(⌥1,m3,m3,3,m3,3,2, . . . ,m3,3,2,...,5). The estimator then takes the J
th-term of ⌥,
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i.e., ⌫⇤(X) = m3, 3, 2, . . . , 5| {z }
(J̄�1)�terms

.

Remark 2.16. We emphasize that Figure 2.2 is not drawn to any precise scale.
In reality the L2-balls should be much “wider” than the set F (and F [↵,�]

B
). This

is because they do not impose that their elements are proper densities, unlike
the elements of the set F (and F [↵,�]

B
) which are non-negative and integrate to 1.

It is intended to be useful conceptual guide to understanding the construction
of our multistage sieve MLE.

We observe that our proposed estimator ⌫⇤(X) can be thought of as an
“multistage sieve MLE” in the spirit of Wong and Shen (1995). Broadly speaking
a ‘sieve’ MLE effectively takes the MLE over a strategically constrained subset
of the parameter space, i.e., F in our setting (see Chapter 8 Grenander, 1981,
e.g., for more details). Specifically, as we traverse the down the finite-depth
maximal packing set tree, each group of children densities along with the MLE
selection rule can be thought of as a “sieve”. We note that the sieve MLE
proposed in Wong and Shen (1995) is a construction which is also not practically
computable for general density classes F .
Remark 2.17 (An online finite packing set tree construction). We note that the
finite-depth maximal packing set tree described in Step 2, can be replaced with
a conceptually simpler online finite-depth maximal packing set tree construction.
This proceeds as follows. Once again, as per Step 2, we can initialize ⌥1 2 F
to be the root node independently of the data. We then construct the second
level of our packing set tree, i.e., P⌥1 := {m1,m2,m3, . . . ,m|P⌥1 |}, as the
previously described maximal packing set. This first level is constructed
without looking at the data samples X. This time however, we can traverse
down the first level of the tree and set ⌥2 := argmax⌫2P⌥1

P
n

i=1 log ⌫(Xi), i.e.,
by using the data samples X. Given ⌥2 selected in this data driven manner,
we can construct the second level of the tree as the children of ⌥2, i.e., the
maximal packing set P⌥2 without using the data samples. We can then set
⌥3 := argmax⌫2P⌥2

P
n

i=1 log ⌫(Xi), once again using the data. We can thus
repeat this recursive process for J iterations, whereby the maximal packing set
of children of each parent node are constructed without seeing the data. The
specific child node is selected after seeing the data, and then the estimator can
traverse to one of these children. This does not require the all possible children
of all possible parent nodes of the maximal packing set tree to be constructed
up front as described in Step 2. Instead, we only construct the children as
required in a simple sequential manner.
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We next show that our multistage sieve MLE is a measurable function of
the data with respect to the Borel �-field on F in L2-metric topology. This is
important, because all upper bound risk rates in expectation for ⌫⇤(X) that
follow, are with respect to the L2-metric topology on F .

Proposition 2.18 (Measurability of ⌫⇤(X)). The multistage sieve MLE, i.e.,
⌫
⇤
(X), is a measurable function of the data with respect to the Borel �-field on

F in the L2-metric topology.

With the measurability of ⌫⇤(X) established, the main theorem establishing
the performance of ⌫⇤(X) is Theorem 2.19 below.

Theorem 2.19 (Upper bound rate for the multistage sieve MLE ⌫
⇤
(X)).

Let, ⌫⇤(X) = ⌥
J

be the output of the multistage sieve MLE which is run for
J 2 N steps. Here J is defined as the maximal integer J 2 N, such that
"J :=

p
L(↵,�,c/2�1) d

2(J�2)c
satisfies4

n"
2
J > 2 logM

loc

F

 
"J

cp
L(↵,�, c/2� 1)

, c

!
_ log 2, (2.11)

or J = 1 if no such J exists. Then

Ek⌫⇤(X)� fk22  C̄"
⇤2
,

for some universal constant C̄, and where "⇤ := "
J
. We remind the reader that

c := 2(C + 1) is the constant from the definition of local metric entropy, which
is assumed to be sufficiently large. Here C is assumed to satisfy (2.9), and
L(↵,�, C) is defined as per (2.10).

We will now formally illustrate that the above estimator achieves the
minimax rate. The precise expression of the rate is quantified in the following
result.

Theorem 2.20 (Minimax rate). Define "⇤ := sup{" : n"2  logM
loc

F (", c)},
where c in the definition of local metric entropy is a sufficiently large absolute
constant. Then the minimax rate is given by "⇤2 ^ d

2 up to absolute constant
factors.

4Observe that by the definition of "
J

and (2.11) we have that all packing sets used in
the construction of the estimator must be finite, even though we are not assuming that the
set F is totally bounded.
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Remark 2.21 (Extending results to loss functions in KL-divergence and the
Hellinger metric). Recall that by Lemma 2.5 we have the “topological equiv-
alence” of the KL-divergence and squared Hellinger metric with the squared
L2-metric on F . This means that we can readily extend our minimax risk
bounds in Theorem 2.20 to loss functions measured via KL-divergence and the
squared Hellinger metric. The important consideration is that (2.11) is still
solved (in both cases) using the local metric entropy of F using the squared
L2-metric. Note that for the KL-divergence to be well-defined, we require that
all densities are strictly positively lower bounded over the common compact
support.

We now argue that the minimax rate for a class F ⇢ F [0,�]
B

which is convex
and not necessarily lower bounded by ↵ > 0 is given by the same equation, as
long as there exists a single density in f↵ 2 F which is ↵-lower bounded. The
argument used to establish this claim essentially the same as used in Yang and
Barron (1999, Lemma 1), which we formalize for our setting in Proposition 2.22.
For completeness, we provide all details for our setting in the Appendix.

Proposition 2.22 (Extending results to F [0,�]
B

). Let F ⇢ F [0,�]
B

be a convex
class of densities, with at least one f↵ 2 F that is ↵-lower bounded, with
↵ > 0. Then the minimax rate in the squared L2-metric is "⇤2 ^ d

2, where
"
⇤ := sup{" : n"2  logM

loc

F (", c)}.

2.2.3 Adaptivity

In this section we illustrate that the estimator, ⌫⇤(X), as defined in Section 2.2.2
is adaptive to the true density f . Before that, similar to Neykov (2022) we
re-define the notion of adaptive L2-local metric entropy for any density ✓ 2 F .

Definition 2.23 (Adaptive Local Entropy). Let ✓ 2 F be a density. Let
M(✓, ", c) denote the maximal cardinality of a packing set of the set B2(✓, ")\F
at an L2 distance "/c.

M
adloc

F (✓, ", c) := M("/c,F \B2(✓, ")) =: M
glo

F\B2(✓,")
("/c) .

We refer to logM
adloc

F (✓, ", c) as the adaptive L2-local metric entropy of F at
✓.

Theorem 2.24 (Adaptive upper bound rate for the multistage sieve MLE
⌫
⇤
(X)). Let, ⌫⇤(X) = ⌥

J
be the output of the multistage sieve MLE which is
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run for J iterations where J is defined as the maximal solution to

n"
2
J > 2 inf

f2F
M

adloc

F

 
f, 2"J

cp
L(↵,�, c/2� 1)

, 2c

!
_ log 2,

where "J :=

p
L(↵,�,c/2�1) d

2(J�2)c
and J = 1 if no such J exists5. Let J⇤ be defined

as the maximal integer J 2 N, such that "J :=

p
L(↵,�,c/2�1) d

2(J�2)c
such that6.,

n"
2
J > 2M

adloc

F

 
f, 2"J

cp
L(↵,�, c/2� 1)

, 2c

!
_ log 2, (2.12)

and J
⇤
= 1 if no such J exists. Then

Ek⌫⇤(X)� fk22  C̄"
⇤2
,

for some universal constant C̄, and where "⇤ := "J⇤. We remind the reader
that c := 2(C + 1) is the constant from the definition of local metric entropy,
which is assumed to be sufficiently large. Here C is assumed to satisfy (2.9),
and L(↵,�, C) is defined as per (2.10).

2.3 Examples

We will now apply our work to derive risk bounds for density estimation (under
the squared L2-metric) for various examples of convex density classes F . To
that end, per Proposition 2.22 our risk bounds only require us to establish
that the stated class F is indeed convex, and importantly that there exists
at least one density f↵ 2 F that is positively bounded away from 0 over the
entire support B. In order to establish the latter fact we can usually take
f↵ ⇠ Unif[B], and check that it lies in our density class F , and by suitably
expanding our ambient space7 F [↵,�]

B
. We will also use the following key fact

relating L2-local and L2-global metric entropies.

logM
glo

F ("/c)� logM
glo

F (")  logM
loc

F (", c)  logM
glo

F ("/c) (2.13)
5Note that running the estimator with J many steps, may result into having non-finite

packing sets — that is not an issue however.
6Observe that by the definition of "

J
and (2.11) we have that some packing sets used in

the construction of the adaptive estimator may not be finite, but will be at most countable.
This follows from the L2-separability of F and is formalized in Lemma 2.34 in the appendix.
We note that the measurability of the adaptive estimator still holds as per Proposition 2.18
in this case.

7We reiterate that our use of {↵,�} in this section (and throughout the paper) is only
used to refer to the constants in Definition 2.1, of F [↵,�]

B
and thus F .
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Here, (2.13) follows directly from Yang and Barron (1999, Lemma 2), where
it is only proved for the case c = 2. However, their proof directly extends to
the more general case for each c > 0, which is required for our setting. For the
various examples of F that follow below, we will show that a stronger sufficient
condition on global entropy is satisfied, namely

logM
glo

F ("/c)� logM
glo

F (") ⇣ logM
glo

F ("/c), (2.14)

provided we take c to be sufficiently large enough, which is within our control
to do, per our packing set tree construction. In short, (2.14) will enable us
to bound the local metric entropy via (2.13). To illustrate this, we initially
consider two examples from Yang and Barron (see 1999, Section 6). We begin
with the class F := Lip�,q( ), i.e., the (�, q, )-Lipschitz density class defined
as per (2.15). As noted in Yang and Barron (1999, Section 6.4), with fixed
constants max {1/q � 1/2, 0} < �  1, and 1  q  1, the "-global metric
entropy of Lip�,q( ) is of the order "�1/� per Birman and Solomjak (1980).

Example 2.25 (Lipschitz density class F). Let 1 <  < � <1, max {1/q � 1/2, 0} <

�  1, and 1  q  1 be fixed constants, and B := [0, 1]. Now, let
F := Lip�,q( ) denote the space of (�, q, )-Lipschitz densities with total
variation at most �. That is,

Lip�,q( ) :=

⇢
f : B ! [0, ]

���� kf(x+ h)� f(x)kq   h� , kfkq   ,
Z

B

f dµ = 1, f measurable
�
,

(2.15)
and kfkq :=

�R
B
|f(x)|q dµ

�1/q. Note that in (2.15) we have that x 2 B, and
only consider h > 0 such that x+ h 2 B, so that the predicate of Lip�,q( ) is
well-defined. Then Lip�,q( ) is a convex density class, there exists a density
f↵ 2 Lip�,q( ) that is strictly positively bounded away from 0, and the minimax
rate (in the squared L2-metric) for estimating f 2 Lip�,q( ) is of the order

n
� 2�

2�+1 .

Another well studied density estimation problem is the case where F := BV⇣
is total bounded variation at most ⇣, defined as per (2.16). Importantly we
note that the "-global L2-metric entropy of this well studied function class is of
the order "�1 (see Section 6.4 Yang and Barron, 1999, e.g., for more details).

Example 2.26 (Bounded total variation density class F). Let 1 < ⇣ < � <1
be a fixed constant, and B := [0, 1]. Now, let F := BV⇣ denote the space of
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univariate densities with total variation at most �. That is,

BV⇣ :=

⇢
f : B ! [0, ⇣]

���� kfk1  ⇣, V (f)  ⇣,
Z

B

f dµ = 1, f measurable
�
,

(2.16)
where we define the total variation of f , i.e., V (f) as

V (f) := sup

{x1,...,xm | 0x1<···<xm1,m2N}

m�1X

i=1

|f (xi+1)� f (xi) |, (2.17)

and kfk1 := supx2B |f(x)|. Then the minimax rate (in the squared L2-metric)
for estimating f 2 BV⇣ is of the order n

�2/3.

Another interesting example illustrating the use case of our bounds is that
where F := Quad� , forms the density class of �-quadratic functionals defined
as per (2.18). Importantly we note that the "-global L2-metric entropy of
this well studied function class is of the order "�1/4 (see Example 15.8 and
Example 15.22 Wainwright, 2019, e.g., for more details).

Example 2.27 (Quadratic functional density class F). Let 0 < ↵ < 1 < � <

1, and � > 1 be fixed constants, with B := [0, 1]. Now, let F := Quad� denote
the space of univariate quadratic functional densities. That is,

Quad� :=

⇢
f : B ! [↵,�]

���� kf
00k1  �,

Z

B

f dµ = 1, f measurable
�
. (2.18)

Then Quad� is a convex density class, there exists a density f↵ 2 Quad� that is
strictly positively bounded away from 0, and the minimax rate (in the squared
L2-metric) for estimating f 2 Quad� is of the order n

�4/5.

We now turn our attention to an interesting example, which demonstrates
that our results can yield useful bounds in cases where L2-global metric entropy
of F may be unknown (or difficult to compute), but the L2-local metric entropy
can be controlled.

Example 2.28 (Convex mixture density class F). Let F := Convk where

Convk :=

(
kX

i=1

↵ifi

�����

kX

i=1

↵i = 1,↵i � 0, fi 2 F [↵,�]
B

)
, (2.19)

for some fixed k 2 N and fi 2 F [↵,�]
B

for each i 2 [k]. Further, let G =

(Gij)i,j2[k] denote the Gram matrix with Gij :=
R
B
fifjµ( dx), which we

assume is positive definite, i.e., G � 0. Then the minimax rate for estimating
f 2 Convk is bounded from above by

q
k

n
up to absolute constant factors.
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2.4 Discussion

In this paper we derived exact minimax rates for density estimation over convex
density classes. Our work builds on seminal research of Le Cam (1973); Birgé
(1983); Yang and Barron (1999); Wong and Shen (1995). More directly, we
non-trivially adapted the techniques of Neykov (2022), who used it for deriving
exact rates for the Gaussian sequence model. Our results demonstrate that the
L2-local metric entropy always determines that minimax rate under squared
L2-loss in this setting. We thus provide a unifying perspective across parametric
and nonparametric convex density classes, and under weaker assumptions than
those used by Yang and Barron (1999).

An important open question that we would like to think further about
is whether there exists a computationally tractable estimator which is also
minimax optimal in our setting. We can also consider applying our techniques
to the nonparametric regression setting (with Gaussian noise) where f is a
uniformly bounded regression function of interest. We leave these exciting
directions for future work. Finally, we hope that this research stimulates further
activity in approximating L2-local metric entropy for various convex density
classes.
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-packing set:

-packing set:

-packing set:

-packing set:

Figure 2.2: Maximal packing set tree construction in Step 2.
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Appendix - Chapter 2

2.A Preliminary

We begin with some basic mathematical preliminaries for our work.

2.A.1 Notation Summary

To ensure that the Appendix is can be read in a standalone manner, we
consolidate key notation used in the paper in Table 2.A.1.

Table 2.A.1: Notation and conventions used in this chapter

Variables and inequalities

a ^ b min {a, b} for each a, b 2 R
a _ b max {a, b} for each a, b 2 R

.  up to positive universal constants
& � up to positive universal constants
⇣ if both . and & hold

Functions and sets

k · k2 the L2-metric in F
[m] {1, . . . ,m}, for m 2 N

B2(✓, r) closed L2-ball centered at ✓ 2 F with radius r

2.A.2 Properties of F [↵,�]
B

Here we provide some basic analytic properties of our core density class F [↵,�]
B

,
as per Definition 2.1. Many of these facts will be used, sometimes implicitly,
in our proofs. We hope that by documenting them rigorously, they provide
the reader with a much richer understanding of the geometry of this broader
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density class. This may also be a useful reference for researchers in working in
similar density estimation settings. We provide suitable references where the
properties follow from standard real analysis theory.

Lemma 2.29 (Convexity of F [↵,�]
B

). The density class F [↵,�]
B

, forms a convex
set, in the L2-metric.

Proof of Lemma 2.29. In order to show the convexity of F [↵,�]
B

, Let f, g 2
F [↵,�]
B

, and let  2 [0, 1] be arbitrary. Then for each x 2 B, we observe that

(f + (1� )g)(x) := f(x) + (1� )g(x) � ↵+ (1� )↵ � ↵ (2.20)
(f + (1� )g)(x) := f(x) + (1� )g(x)  � + (1� )�  � (2.21)

From (2.20) and (2.21), it follows that f + (1� )g : B ! [↵,�]. Moreover,
since

R
B
f dµ =

R
B
g dµ = 1, we have

Z

B

(f + (1� )g) dµ = 

Z

B

f dµ+ (1� )
Z

B

g dµ = 1. (2.22)

Since f, g are measurable functions, then so is their convex combination, i.e.,
f +(1�)g. Combining the above we have shown that f +(1�)g 2 F [↵,�]

B
,

which proves the convexity of F [↵,�]
B

, as required.

Lemma 2.30 (Boundedness of F [↵,�]
B

). The density class F [↵,�]
B

, is bounded,
in the L2-metric.

Proof of Lemma 2.30. We now show that F [↵,�]
B

is bounded in the L2-metric.
To see this observe that for any f, g 2 F [↵,�]

B
:

kf�gk22 :=
Z

B

(f�g)2 dµ 
Z

B

|f � g| 2� dµ  2�

✓Z

B

|f | dµ+

Z

B

|g| dµ
◆

= 4�.

(2.23)
It follows that diam2

⇣
F [↵,�]
B

⌘
:= sup

n
kf � gk2

��� f, g 2 F [↵,�]
B

o
 2
p
� < 1,

as required.

Lemma 2.31 (F [↵,�]
B

lies in L
2
(B)). The density class F [↵,�]

B
, satisfies F [↵,�]

B
⇢

L
2
(B), where

L
2
(B) :=

⇢
f : B ! R

����
Z

B

f
2
dµ <1, f measurable

�
. (2.24)

As such (F [↵,�]
B

, k · k2) is an induced metric subspace of (L2
(B), k · k2).
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Proof of Lemma 2.31. Let f 2 F [↵,�]
B

be arbitrary. We then observe that
Z

B

f
2
dµ 

Z

B

f� dµ = � <1, (2.25)

since f  � by definition of F [↵,�]
B

. Given that f : B ! [↵,�] ⇢ R, we have
that f 2 L

2
(B), i.e., F [↵,�]

B
⇢ L

2
(B) as required.

Lemma 2.32 (Completeness and separability of L2
(B)). The metric space

(L
2
(B), k · k2), with L

2
(B) defined as per Equation (2.24), is complete and

separable.

Proof of Lemma 2.32. We note that completeness of (L
2
(B), k · k2) follows

directly from Brezis (2011, Theorem 4.8), and separability follows from Brezis
(2011, Theorem 4.13).

Lemma 2.33 (Completeness and separability of (F [↵,�]
B

, k · k2)). The metric
space (F [↵,�]

B
, k · k2) is complete and separable.

Proof of Lemma 2.30. Firstly we note that (F [↵,�]
B

, k · k2) is an induced metric
subspace of (L2

(B), k · k2) per Lemma 2.31. Now separability of (F [↵,�]
B

, k · k2)
follows, since it is inherited from (L

2
(B), k·k2) by applying Shirali and Vasudeva

(2006, Proposition 2.3.16). We now show the completeness of (F [↵,�]
B

, k · k2).
Take an arbitrary Cauchy sequence (fk)

1
k=1 in F [↵,�]

B
. Since (L

2
(B), k · k2) is

complete per Lemma 2.32, it follows that the L2 limit of (fk)
1
k=1 exists in

L
2
(B). Let f be that limit, i.e., limk!1 fk =: f 2 L

2
(B). We will show that

f 2 F [↵,�]
B

. First let us show that it is a density, i.e., it integrates to 1. By
Cauchy-Schwartz

R
B
|fk(x)� f(x)|µ( dx) 

qR
B
|fk(x)� f(x)|2µ( dx) ! 0 so

that
R
f(x)µ( dx) = 1. Next consider the function f

0
= (f^↵)_�. Since for any

x 2 [↵,�] and any y we have |x� y| � |x� (y ^↵)_�| then that implies (since
fk 2 F [↵,�]

B
) that

R
B
|fk(x)� f

0
(x)|2µ( dx) 

R
B
|fk(x)� f(x)|2µ( dx)! 0 and

so f
0 must also be a limit of fk. Since the limits are unique (up to considering

equivalence classes modulo sets of measure 0 with respect to µ) then f = f
0

and hence it belongs to F [↵,�]
B

.

Lemma 2.34 (Separability of (F , k · k2)). The metric space (F , k · k2) is
separable. Furthermore, if A ⇢ F , then (A, k · k2) is separable.
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Proof of Lemma 2.34. We first observe by Lemma 2.33 that the metric space
(F [↵,�]

B
, k · k2) is separable. It then follows that since F ⇢ F [↵,�]

B
, that (F , k · k2)

is a restriction of (F [↵,�]
B

, k · k2), and thus a separable metric space by Shirali
and Vasudeva (2006, Proposition 2.3.16). By a similar argument, it follows
that if A ⇢ F , then (A, k · k2) is separable.

The following lemma shows that in general F [↵,�]
B

is not totally bounded. We
consider a restricted case of B := [0, 1], to construct a suitable counterexample.

Lemma 2.35 (Non total boundedness of (F [↵,�]
[0,1] , k · k2)). Suppose � � 2� ↵.

Then the metric space (F [↵,�]
[0,1] , k · k2) is not totally bounded, and hence not

compact.

Proof of Lemma 2.35. We note that per Shirali and Vasudeva (2006, Theo-
rem 5.1.12) a metric space is totally bounded if and only if every sequence
contains a Cauchy subsequence. We will use this characterization to construct
a counterexample to demonstrate that (F [↵,�]

[0,1] , k · k2) is not totally bounded.

In particular, we will define a sequence in (F [↵,�]
[0,1] , k · k2) which can’t contain

any Cauchy subsequence.
Specifically we consider the sequence of functions (1, {x 7! sin(2⇡jx)}j2N).

These functions are orthonormal in L
2
([0, 1]). Construct the sequence of

functions fj(x) = 1 + (1� ↵) sin(2⇡jx) for j 2 N. By the orthogonality of 1
and sin(2⇡jx) we have that

R 1
0 fj(x)dx = 1. Furthermore, ↵  fj(x)  2� ↵

for all x 2 [0, 1], hence since � � 2� ↵ we have fj(x) 2 F [↵,�]
[0,1] . Take any two

j 6= k 2 N, and consider

kfj � fkk22 = (1� ↵)2k sin(2⇡jx)� sin(2⇡kx)k22 = 2(1� ↵)2 > 0.

This shows that there cannot be a Cauchy subsequence and hence the set is
not totally bounded.

2.A.3 Elementary inequalities

We will state and prove Lemma 2.36, which will provide the key fact to will
assist us in the proof of the lower bound in Lemma 2.5.

Lemma 2.36 (Elementary log inequality). For each � > 0, and for any
x 2 (0, �], the following relationship holds:

log x  (x� 1)� h(�)(x� 1)
2
. (2.26)
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Here h : (0,1) ! R is defined as in (2.6), and is positive over its entire
support.

Proof of Lemma 2.36. We first argue that h(x) > 0 for x 2 (0,1). This is by
the elementary inequality log(x + 1)  x for all x � �1. Next, it suffices to
show that the map x 7! h(x) is decreasing for x > 0 where h is defined in (2.6).
This is because (2.26) holds for x = 1, and if x 6= 1 it is equivalent to

h(�)  (x� 1)� log x

(x� 1)2
,

for x  �. It is simple to verify that

h
0
(x) =

�x2 + 2x log x+ 1

(x� 1)3x
.

We will show that the above function is negative on (0,1) which will complete
the proof. First we will evaluate it at x = 1. By a triple application of
L’Hôpital’s rule it is simple to verify that d

dx
h(x)|x=1 = �1

3 < 0. Thus, it
remains to show that for x 6= 1,

(�x2 + 2x log x+ 1)(x� 1) < 0.

Now let f(x) :=
x
2�1
2x � log x. We want to show that f(x) > 0, for each x > 1

and f(x) < 0 for x < 1. First observe that f(1) = 0. Moreover, we have that

f
0
(x) =

(x� 1)
2

2x2
> 0. (2.27)

That is, f(x) is strictly increasing, which implies that f(x) > 0 for each
x 2 (1,1), and f(x) < 0 for each x < 1 as required.
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2.B Proofs of Section 2.2

2.B.1 Proof of Lemma 2.5

Lemma 2.5 (KL-L2 equivalence on F [↵,�]
B

). For each pair of densities f, g 2
F [↵,�]
B

, the following relationship holds:

c(↵,�)kf � gk22  dKL(f ||g)  (1/↵)kf � gk22, (2.5)

where we denote c(↵,�) :=
h(�/↵)
�

> 0. Here h : (0,1)! R is defined to be

h(�) :=

(
��1�log �
(��1)2 if � 2 (0,1) \ {1}

1
2 = limx!1

x�1�log x
(x�1)2 if � = 1,

(2.6)

and is positive over its entire support. It is also easily seen that on F [↵,�]
B

, dKL
(and hence the L2-metric) is also equivalent to the Hellinger metric. Further-
more, these properties are also inherited by F ⇢ F [↵,�]

B
, which is our density

class of interest.

Proof of Lemma 2.5. We will prove the upper and lower bound in turn.

(Upper bound in (2.5)): We seek to show that dKL(f ||g)  1
↵
kf � gk22.

First, for any two densities f, g 2 F , we define the �2-divergence between f

and g, as follows:

�
2
(f ||g) :=

Z

B

(f � g)
2

g
dµ. (2.28)

Per Remark 2.4, we note that �2
(f ||g) in (2.28) is similarly well-defined. We

then have:

dKL(f ||g)  �2
(f ||g) (per Gibbs and Su (2002, Theorem 5))

:=

Z

B

(f � g)
2

g
dµ (using (2.28))

 1

↵

Z

B

(f � g)
2
dµ (since infx2B g(x) � ↵ > 0)

=:
1

↵
kf � gk22. (by definition)

As required. ⌅

(Lower bound in (2.5)): We seek to show that dKL(f ||g) � c(↵,�)kf � gk22.
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We proceed as follows: First observe that for any f, g 2 F , we have that
0 <

g

f
 �

↵
<1

dKL(f ||g) :=
Z

B

f log

✓
f

g

◆
dµ (per (2.4))

=

Z

B

�f log

✓
g

f

◆
dµ (since infx2B f(x) � ↵ > 0)

�
Z

B

�f
 ✓

g

f
� 1

◆
� h(�/↵)

✓
g

f
� 1

◆2
!

dµ

(using Lemma 2.36, with C =
�

↵
and x =

g

f
)

=

Z

B

(f � g) dµ+ h(�/↵)

Z

B

(g � f)
2

f
dµ

� h(�/↵)

�

Z

B

(g � f)
2
dµ

(since
R
B
(f � g) dµ = 0, and 0 < supx2B f(x)  �)

=:
h(�/↵)

�
kf � gk22

=: c(↵,�)kf � gk22, (2.29)

where we define c(↵,�) :=
h(�/↵)
�

> 0. This proves the lower bound in (2.5), as
required. ⌅

We now show the following equivalence between the Hellinger, i.e., dH-metric,
and the L2 metric in F [↵,�]

B
.

(1/4�)kf � gk22  dH(f ||g)2  (1/↵)kf � gk22. (2.30)

To prove the upper bound in (2.30), we note that

dH(f ||g)2  dKL(f ||g) (from Gibbs and Su (2002))
 (1/↵)kf � gk22, (per (2.5))

as required. In order to prove the lower bound we observe that

kf � gk22 =
Z

B

(f � g)
2
dµ

=

Z

B

(

p
f +

p
g )

2
(

p
f �pg )2 dµ

 4�

Z

B

(

p
f �pg )2 dµ (since f, g  �.)

=: 4�dH(f ||g)2, (by definition)
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which implies the required lower bound in (2.30). We have thus established
the required upper and lower bounds in both (2.5) and (2.30).

Finally, we note that (F , k · k2) is metric space, since it is the restriction of
the metric space (F [↵,�]

B
, k · k2). And so the bounds (2.5) and (2.30), are also

inherited by F ⇢ F [↵,�]
B

.

2.B.2 Proof of Lemma 2.11

Lemma 2.11 (Minimax lower bound). Let c > 0 be fixed, and independent of
the data samples X. Then the minimax rate satisfies

inf
b⌫

sup

f2F
Efkb⌫(X)� fk22 �

"
2

8c2
,

if " satisfies logM
loc

F (", c) > 2n"
2
/↵+ 2 log 2.

Proof of Lemma 2.11. Let c > 0 be fixed, and ✓ 2 F be an arbitrary point.
Consider maximal packing the set {f1

, . . . , f
m} ⇢ F\B2(✓, ") at a L2-“distance”

at least "/c. Here B2(✓, ") denotes a closed L2-ball around the point ✓, with
radius ". Suppose it has m elements. Then we know that

I(X; J)  1

m

mX

j=1

dKL

�
f
j ||✓

�
 max

j2[m]
dKL

�
f
j ||✓

�
 max

j2[m]
(1/↵)kf j � ✓k22  "2/↵.

Here the final two inequalities follow by applying (2.5), and using the fact
that {f1

, . . . , f
m} ⇢ F \B2(✓, "), respectively. Hence, if the packing number

satisfies logm � 2n"
2
/↵+ 2 log 2 we will have a lower bound proportional to

"
2 (it will be "2/(8c2)). By taking the supremum over ✓, we conclude that if
logM

loc

F (", c) > 2n"
2
/↵+2 log 2 we have a lower bound proportional to "2.

2.B.3 Proof of Lemma 2.13

Lemma 2.13 (Log-likelihood difference concentration in F). Let � > 0 be
arbitrary, and let X := (X1, . . . , Xn)

> i.i.d.⇠ f 2 F , be the n observed samples.
Suppose we are trying to distinguish between two densities g, g

0 2 F . Let
 (g, g

0
,X) denote their log-likelihood difference per (2.7). We then have

sup

g,g
0 : kg�g

0k2�C�,

kg0�fk2�

P( (g, g0,X) > 0)  exp
�
�nL(↵,�, C)�

2
�

(2.8)
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where

C > 1 +

p
1/(↵c(↵,�)) (2.9)

L(↵,�, C) :=

⇣p
c(↵,�) (C � 1)�

p
1/↵

⌘2

2
�
2K(↵,�) +

2
3 log �/↵

 , (2.10)

with K(↵,�) := �/(↵
2
c(↵,�)), and c(↵,�) is as defined in Lemma 2.5. In the

above P is taken with respect to the true density function f , i.e., P = Pf .

Proof of Lemma 2.13. We first observe per Remark 2.12 that the log-likelihood,
 (g, g

0
, X), is well-defined. Next the mean of these variables, for each i 2 [n], is

Ef


log

g(Xi)

g0(Xi)

�
= Ef


log

✓
f(Xi)

g0(Xi)

.
f(Xi)

g(Xi)

◆�

(which is well-defined by Remark 2.12.)

= Ef


log

f(Xi)

g0(Xi)

�
� Ef


log

f(Xi)

g(Xi)

�

= dKL

�
f ||g0

�
� dKL(f ||g). (2.31)

Where the last line follows by definition using (2.4). We then have

P( (g, g0, X) > 0) = P
 
1

n

nX

i=1

log
g(Xi)

g0(Xi)
> 0

!
(using (2.7))

= P
 
1

n

nX

i=1

log
g(Xi)

g0(Xi)
� Ef log

g(X1)

g0(X1)
> Ef log

g
0
(X1)

g(X1)

!

= P
 
1

n

X

i

log
g(Xi)

g0(Xi)
� Ef log

g(X1)

g0(X1)
> dKL(f ||g)� dKL

�
f ||g0

�
!

(using (2.31))

 exp

 
� n

2
t
2

2
�P

n

i=1 E
⇥
Y

2
i

⇤
+

1
3nt

 
!

= exp

 
� n

2
t
2

2
�
nE

⇥
Y

2
1

⇤
+

1
3nt

 
!

(since Yi are i.i.d.)

= exp

 
� nt

2

2
�
E
⇥
Y

2
1

⇤
+

1
3t

 
!

(2.32)

where  := 2 log �/↵, t := dKL(f ||g) � dKL(f ||g0), and Yi := log
g(Xi)
g0(Xi)

�
Ef log

g(X1)
g0(X1)

. This follows by the boundedness of log g(Xi)/g
0
(Xi), and then
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by applying Bernstein’s inequality, provided that t > 0. In order to check this
final positivity condition, we first note that there exists a C > 0 such that
kg � g

0k2 � C�, and kg0 � fk2  � both hold. We then have

kf � gk2 � (C � 1)�. (2.33)

To see this we observe that by assumption, and the triangle inequality respec-
tively that C�  kg � g

0k  kg � fk+ kf � g
0k. Then using kf � g

0k  � by
assumption and re-arranging, we obtain (2.33) as required. As a result we
obtain the following two inequalities

p
dKL(f ||g) �

p
c(↵,�) kf � gk2 �

p
c(↵,�) (C � 1)� (2.34)

p
dKL(f ||g0) 

p
1/↵ kf � g

0k2 
p
1/↵ �, (2.35)

where C > 0 is defined to be a constant satisfying c(↵,�)(C � 1)
2
> 1/↵, i.e.,

C > 1 +

p
1/(↵c(↵,�)) . (2.36)

Under the condition specified by (2.36), and by squaring and subtracting (2.35)
from (2.34), we obtain

t := dKL(f ||g)� dKL

�
f ||g0

�
� (c(↵,�)(C � 1)

2 � 1/↵)�
2
> 0 (2.37)

Now we show that Ef

�
Y

2
1

�
. dKL(f ||g) + dKL(f ||g0). To see this

Ef

�
Y

2
1

�
 Ef

"✓
log

g(X1)

g0(X1)

◆2
#

= Ef


log

✓
f(X1)

g0(X1)

.
f(X1)

g(X1)

◆�

(which is well-defined by Remark 2.12.)

= Ef

"✓
log

f(X1)

g0(X1)
� log

f(X1)

g(X1)

◆2
#

 2Ef

"✓
log

f(X1)

g(X1)

◆2
#

| {z }
=:A

+2Ef

"✓
log

f(X1)

g0(X1)

◆2
#

| {z }
=:B

(using (a� b)
2  2(a

2
+ b

2
), for a, b � 0.)
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We now bound the A term above, with B handled similarly. We observe that:

A := Ef

"✓
log

f(X1)

g(X1)

◆2
#

(by definition)

=

Z
f

✓
log

f

g

◆2

dµ

=

Z

fg

f

✓
log

g

f

◆2

dµ+

Z

g<f

f

✓
log

f

g

◆2

dµ. (2.38)

Now using log x  x� 1, for each x 2 R>0, we have that

✓
log

g

f

◆2


✓
g � f

f

◆2

and
✓
log

f

g

◆2


✓
f � g

g

◆2

, (2.39)

which hold for f  g (i.e., g

f
� 1), and g < f (i.e., f

g
> 1), respectively. Now

we have:

A 
Z

fg

(g � f)
2

f
dµ+

Z

g<f

(f � g)
2
f

g2
dµ (using (2.38) and (2.39).)

 (1/↵)

Z

fg

(g � f)
2
dµ+ (�/↵

2
)

Z

g<f

(f � g)
2
dµ

(since 0 < ↵ < f, g  �)
 (�/↵

2
)kf � gk22 (since �/↵2 � 1/↵.)

 K(↵,�)dKL(f ||g), (2.40)

where K(↵,�) := �/(↵
2
c(↵,�)), where c(↵,�) is as defined in Lemma 2.5. By

a similar argument, we also have that

B  K(↵,�)dKL

�
f ||g0

�
. (2.41)

Let z := dKL(f ||g) + dKL(f ||g0). Then using (2.40) and (2.41), we obtain

Ef

�
Y

2
1

�
 2K(↵,�)[dKL(f ||g) + dKL

�
f ||g0

�
] =: 2zK(↵,�) (2.42)

Now we use the basic inequality a+ b 
⇣p

a +
p
b

⌘2
 2(a+ b), to obtain

z 
⇣p

dKL(f ||g) +

p
dKL(f ||g0)

⌘2
 2z. (2.43)
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Now, t2 := (dKL(f ||g)� dKL(f ||g0))2 =

⇣p
dKL(f ||g) �

p
dKL(f ||g0)

⌘2 ⇣p
dKL(f ||g) +

p
dKL(f ||g0)

⌘2
,

we have:
⇣p

dKL(f ||g) �
p
dKL(f ||g0)

⌘2
z  t

2  2

⇣p
dKL(f ||g) �

p
dKL(f ||g0)

⌘2
z.

(2.44)
We then conclude using (2.32),(2.37), that

P( (g, g0, X) > 0)  exp

 
� nt

2

2
�
E
⇥
Y

2
1

⇤
+

1
3t

 
!

(per (2.32))

 exp

0

B@�
n

⇣p
dKL(f ||g) �

p
dKL(f ||g0)

⌘2
z

2
�
2zK(↵,�) +

1
3z

 

1

CA

(since t  z and (2.42))

= exp

0

B@�
n

⇣p
dKL(f ||g) �

p
dKL(f ||g0)

⌘2

2
�
2K(↵,�) +

1
3
 

1

CA

 exp

0

B@�
n

⇣p
c(↵,�) (C � 1)�

p
1/↵

⌘2
�
2

2
�
2K(↵,�) +

1
3
 

1

CA

(by subtracting (2.35) from (2.34))
=: exp

�
�nL(↵,�, C)�

2
�
,

whenever condition (2.36) holds, and L(↵,�, C) :=

⇣p
c(↵,�) (C�1)�

p
1/↵

⌘2

2{2K(↵,�)+ 2
3 log �/↵} .

Now, taking the supremum over all g, g0 : kg � g
0k2 � C�, kg0 � fk2  �, the

required result follows.

2.B.4 Proof of Lemma 2.14

Recall that Lemma 2.14 is concerning a packing set. Suppose we have a maximal
packing set of F 0 ⇢ F , i.e., {g1, . . . , gm} ⇢ F 0 ⇢ F such that kgi � gjk2 > �

for all i 6= j, and it is known that f 2 F 0. We then obtain a key concentration
result as per Lemma 2.14.

Lemma 2.14 (Maximum likelihood concentration in F). Let � > 0 be arbitrary,
and let X := (X1, . . . , Xn)

> i.i.d.⇠ f 2 F , be the n observed samples. Suppose
further that we have a maximal �-packing set of F 0 ⇢ F , i.e., {g1, . . . , gm} ⇢ F 0

such that kgi � gjk2 > � for all i 6= j, and it is known that f 2 F 0. Now let
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j
⇤ 2 [m], denote the index of a density whose likelihood is the largest. We then

have
P(kgj⇤ � fk2 > (C + 1)�)  m exp

�
�nL(↵,�, C)�

2
�
,

where C is assumed to satisfy (2.9), and L(↵,�, C) is defined as per (2.10).

Proof of Lemma 2.14. We first define the intermediate thresholding random
variables

Tk :=

(
maxj2[m] kgj � gkk2 , s.t.

P
n

i=1 log gj(Xi) �
P

n

i=1 log gk(Xi), kgj � gkk2 > C�

0 , otherwise,

for each k 2 [m]. Without loss of generality suppose that kgk � fk2  �. Next

P(kgj⇤ � fk2 > (C + 1)�)  P(j⇤ 2 {j : kgj � gkk2 > C�})
 P(Tk > 0).

On the other hand

P(Tk > 0) = P
 
9j 2 [m] :

nX

i=1

log gj(Xi) �
nX

i=1

log gk(Xi), kgj � gkk2 > C�

!

= P

0

@
m[

j=1

(
nX

i=1

log gj(Xi) �
nX

i=1

log gk(Xi), kgj � gkk2 > C�

)1

A

 m exp
�
�nL(↵,�, C)�

2
�
,

(using union bound and Lemma 2.13.)

where C is assumed to satisfy (2.9), and L(↵,�, C) is defined as per (2.10).

2.B.5 Proof of Lemma 2.15

Lemma 2.15 (Monotonicity of local metric entropy). The map " 7! logM
loc

F (", c)

is non-increasing.

Proof of Lemma 2.15. It suffices to show that if g1, . . . , gm 2 F \ B2(✓, ") is
a maximal packing set at a distance "/c, then we can pack B2(✓, "

0
) \ F at

a distance "0/c with at least m points where "0 < ". Consider the points
✓(1 � "0/") + "

0
/"gj . These points clearly are densities since ✓, gj 2 F . We

will show that these points are an "
0
/c packing of B2(✓, "

0
) \ F . First let us

convince ourselves that the points belong to the set. We have

k✓(1� "0/") + "
0
/"gj � ✓k2 = "

0
/"kgj � ✓k2  "0,
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and using the fact that F is convex (by assumption) grants the conclusion.
Next

k✓(1� "0/") + "
0
/"gj � ✓(1� "0/")� "0/"gkk2 = "

0
/"kgj � gkk2 > "

0
/c,

which completes the proof.

2.B.6 Proof of Proposition 2.18

Proposition 2.18 (Measurability of ⌫⇤(X)). The multistage sieve MLE, i.e.,
⌫
⇤
(X), is a measurable function of the data with respect to the Borel �-field on

F in the L2-metric topology.

Proof of Proposition 2.18. Recall our multistage sieve estimator ⌫⇤(X) := ⌥
J
,

where X := (X1, . . . , Xn)
> is a fixed data sample. Here ⌥

J
denotes the last

term of the finite sequence ⌥ := (⌥k)
J

k=1 as described in Section 2.2.2.
In order to show the measurability of ⌫⇤(X) we need to formalize our setting.

We note that our estimator ⌫⇤ : Bn ! F , is more precisely a map from the
measurable space (B

n
,�(B

n
)) to the measurable space (F ,�(F)). Here �(Bn

)

and �(F) denote the Borel �-field with respect to the Euclidean and L2-metric
topologies on B

n and F , respectively.
Our proof strategy will be to proceed by induction on k 2 [J ] over the

sequence ⌥. We will show that each k
th-indexed map in ⌥, i.e., ⌥k, is Borel

measureable, which in turn will imply the measureability of the ⌫⇤(X). Fol-
lowing our (maximal) packing set construction as described in Section 2.2.2
and Figure 2.2, we need to consider the case where the traversal down the tree
is not necessarily unique at each level, i.e., there may be collisions (ties) in
the packing set children nodes, where the likelihood is equal. We do always
ensure a unique path down the maximal packing set tree, by selecting the
smallest alphanumerically indexed children node at each level. However, our
measurability proof must account for this selection rule explicitly.

In order to proceed by induction, we consider the base case for k = 1,
i.e., ⌥1 2 F . Importantly, we note that ⌥1 is chosen arbitrarily from F
independently of the data samples, X. Let A 2 �(F) be any Borel set. Since
all samples X 2 B

n are mapped to ⌥1 in our setting, then ⌥�1
1 [A] = B

n if
⌥1 2 A 2 �(F), or ⌥�1

1 [A] = ?, otherwise. In either case we have ?, B
n 2

�(B
n
), which shows that ⌥1 is Borel measurable. Now consider the event

{⌥2 = ms} :=
�
(X1, . . . , Xn)

> 2 B
n
��⌥2(X1, . . . , Xn) = ms

 
⇢ B

n, for some
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index s 2 N. Then we have

{⌥2 = ms} :=

n
(X1, . . . , Xn)

> 2 B
n

���⌥2(X1, . . . , Xn) = ms

o
(2.45)

=

\

g2P⌥1

(
(X1, . . . , Xn)

> 2 B
n

�����

nX

i=1

log(ms(Xi)) �
nX

i=1

log(g(Xi))

)
\

s�1\

j=1

(
(X1, . . . , Xn)

> 2 B
n

�����

nX

i=1

log(ms(Xi)) >

nX

i=1

log(mj(Xi))

)
.

(2.46)

In (2.46), we observe that {⌥2 = ms} ⇢ B
n is represented as the intersection

of 2 separate (finite) set intersections. Note that the second intersection set
explicitly accounts for our alphanumerical index selection rule in the children
densities of P⌥1 . Consider the first finite intersection term. Here, each g 2
P⌥1 ⇢ F are Borel measurable by (2.1). We note that the log and the addition
(i.e., “+R”) functions are both continuous and measurable, and therefore, so
is their composition. Thus the resulting finite sum,

P
n

i=1 log f(Xi), is a
measurable function, for any density f 2 F (which is always measurable). As
such the ⌥2 is measurable since all these inequalities give rise to measurable
sets and when one intersects them (they are finitely many) one obtains another
measurable set. Once again, let A 2 �(F) be any Borel set. Then such an
A contains either no such densities ms, or at most finitely many (since the
number of children of our maximal packing set tree is always finite). If no such
ms 2 A, then ⌥�1

2 [A] = ? 2 �(Bn
). Thus ⌥2 is indeed Borel measurable in

this case. In the case where there exist finitely many such ms 2 A, it follows
that

⌥
�1
2 [A] =

[

{s |ms2A}

{⌥2 = ms} =:

[

{s |ms2A}

n
(X1, . . . , Xn)

> 2 B
n

���⌥2(X1, . . . , Xn) = ms

o

(2.47)
In (2.47) we note that ⌥�1

2 [A] represents a finite union of Borel measurable
sets as per (2.46), which is again Borel measurable. That is, we have shown
that ⌥�1

2 [A] 2 �(Bn
), which indeed implies the Borel measurability of ⌥2, as

required.
Similarly, consider the event {⌥3 =: ms,t} ⇢ B

n, for some t 2 N and s 2 N
taken as per (2.45). Here, the indexed density ms,t signifies that ⌥3 is derived
from the children of the packing set of ⌥2 =: ms, as denoted by Pms

in our
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work. Once again we can write this ⌥3 as

{⌥3 = ms,t} :=

n
(X1, . . . , Xn)

> 2 B
n

���⌥3(X1, . . . , Xn) = ms,t

o

=

\

g2Pms

(
(X1, . . . , Xn)

> 2 B
n

�����

nX

i=1

log(ms,t(Xi)) �
nX

i=1

log(g(Xi))

)
\

t�1\

j=1

(
(X1, . . . , Xn)

> 2 B
n

�����

nX

i=1

log(ms,t(Xi)) >

nX

i=1

log(ms,j(Xi))

)
\

\
{⌥2 = ms}. (2.48)

By a similar argument to the measurability of ⌥2 it follows that ⌥3 is also
measurable. As such, given the recursive construction of the finite sequence
⌥ := (⌥k)

J

k=1 via our maximal packing set tree traversal, this pattern induc-
tively repeats for each k 2 {4, . . . , J}. Since ⌫⇤(X) := ⌥

J
, this implies the

measurability of ⌫⇤(X), as required.

Remark 2.37. We note that the arguments in the proof above hold, even if
the cardinality of the set of children densities at any iteration were at most
countable (not just finite). That is, (2.46) would still return a measureable
set even if |P⌥1 | = 1, since Borel measurability is preserved over countable
intersections and unions. The packing sets in our construction are necessarily
at most countable, since all of the subsets of F we consider are separable
in the L2-metric (i.e., contain a countably dense subset). This follows from
Lemma 2.34.

2.B.7 Proof of Theorem 2.19

We begin with a useful result, which will enable us to construct upper bounds
for estimator ⌫⇤(X).

Lemma 2.38. The finite sequence ⌥ := (⌥k)
J

k=1, as defined in the construction
of our estimator ⌫⇤(X), satisfies

k⌥J �⌥J 0k2 
d

2J
0�2

, (2.49)

for each pair of positive integers J
0
< J .

Proof of Lemma 2.38. Let ⌥J 0 ,⌥J 2 ⌥, for any positive integers J > J
0 � 1.

We then have

k⌥J �⌥J 0k2 
J�1X

i=J 0

k⌥i+1 �⌥ik2 
J�1X

i=J 0

d

2i�1
 d

2J
0�2

. (2.50)
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As required.

Lemma 2.39 (Telescoping sum of conditional probabilities). Let n � 2 be
a fixed integer, and {A1, A2, . . . , An} denote events on a common probability
space, with P(Ac

j
) > 0 for each j � 1. We then have

P(An) 
2X

j=n

P(Aj | Ac

j�1) + P(A1). (2.51)

Proof of Lemma 2.39. We will prove this by induction on n � 2. We check the
induction base case for n = 2. We first observe that

A2 ✓ A1 [A2 = (A2 \A
c

1) tA1, (2.52)

where the latter set is a disjoint union. It then follows that

P(A2)  P (A2 \A
c

1) + P(A1) (by monotonicity of P applied to (2.52))

 P (A2 \A
c
1)

P(Ac
1)

+ P(A1) (since P(Ac
1) 2 (0, 1], by assumption)

=: P(A2 | Ac

1) + P(A1),

which proves the base case for n = 2. Now, by induction assume the result is
true for each integer n = k > 2. We then have for n = k + 1 that:

P(Ak+1)  P(Ak+1 | Ac

k
) + P(Ak) (using induction base case)

 P(Ak+1 | Ac

k
) +

2X

j=k

P(Aj | Ac

j�1) + P(A1)

(using induction hypothesis)

=

2X

j=k+1

P(Aj | Ac

j�1) + P(A1), (2.53)

as required. So the result is true for n = k+ 1, and thus by induction holds for
each integer n � 2.

Theorem 2.19 (Upper bound rate for the multistage sieve MLE ⌫
⇤
(X)).

Let, ⌫⇤(X) = ⌥
J

be the output of the multistage sieve MLE which is run for
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J 2 N steps. Here J is defined as the maximal integer J 2 N, such that
"J :=

p
L(↵,�,c/2�1) d

2(J�2)c
satisfies9

n"
2
J > 2 logM

loc

F

 
"J

cp
L(↵,�, c/2� 1)

, c

!
_ log 2, (2.11)

or J = 1 if no such J exists. Then

Ek⌫⇤(X)� fk22  C̄"
⇤2
,

for some universal constant C̄, and where "⇤ := "
J
. We remind the reader that

c := 2(C + 1) is the constant from the definition of local metric entropy, which
is assumed to be sufficiently large. Here C is assumed to satisfy (2.9), and
L(↵,�, C) is defined as per (2.10).

Proof of Theorem 2.19. Combining the results of Lemma 2.14 (with c := 2(C+

1) where c is the constant from the definition of local packing entropy) and
Lemma 2.15 we conclude that for each j 2 {2, . . . , J} we have

P
✓
kf �⌥jk2 >

d

2j�1

���� kf �⌥j�1k2 
d

2j�2
,⌥j�1

◆

 |P⌥j�1 | exp
✓
� nL(↵,�, C)d

2

22(j�1)(C + 1)2

◆
(2.54)

M
loc

F

✓
d

2J�2
, c

◆
exp

✓
� nL(↵,�, C)d

2

22(j�1)(C + 1)2

◆
(2.55)

where P⌥j
are the maximal packing sets described in the construction of ⌫⇤(X).

Crucially, we observe that the RHS of (2.55) does not depend on the conditioned
random variables, i.e., ⌥j�1, for each j 2 {2, . . . , J} hence we can drop ⌥j�1

from the conditioning. Now let denote Aj := {kf � ⌥jk2 >
d

2j�1 }, for each
integer j � 1. Then we can proceed by working with the unconditional events
Aj in (2.55).

Moreover, we then have that Ac

j�1 := {kf�⌥j�1k2  d

2j�2 } for each integer
j � 2. In particular P(Ac

1) = {kf �⌥1k2  d} = 1, since f,⌥1 2 F , so indeed
kf �⌥1k2  diam2 (F) =: d almost surely. By aligning our notation directly

9Observe that by the definition of "
J

and (2.11) we have that all packing sets used in
the construction of the estimator must be finite, even though we are not assuming that the
set F is totally bounded.
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with Lemma 2.39, we can apply the telescoping bound to P(Aj) as follows

P(AJ) := P
✓
kf �⌥Jk2 >

d

2J�1

◆
(by definition)

M
loc

F

✓
d

2J�2
, c

◆ J�1X

j=1

exp

✓
�nL(↵,�, C)d

2

22j(C + 1)2

◆
(per (2.55))

M
loc

F

✓
d

2J�2
, c

◆
a(1 + a

4�1
+ a

16�1
+ . . .) (J > 1) (2.56)

M
loc

F

✓
d

2J�2
, c

◆
a(1 + a+ a

2
+ . . .) (J > 1)

M
loc

F

✓
d

2J�2
, c

◆
a

1� a
(J > 1), (2.57)

where for brevity in (2.56) we denote

a := exp

✓
� nL(↵,�, C)d

2

22(J�1)(C + 1)2

◆
.

Since C is assumed to satisfy (2.9), and L(↵,�, C) is defined as per (2.10), it
follows that a < 1. Note here that the above bound (2.57) holds, provided that
P(Ac

j
) > 0 for j < J as required by Lemma 2.39. Suppose that the RHS of

(2.57) is strictly smaller than 1. In that case for all j, P(Ac

j
) > 0 since bound

(2.57) holds inductively for all P(Aj) for j  J . On the other hand, if the RHS

of (2.57) is � 1 then (2.57) trivially holds. In both cases we conclude that
(2.57) holds.

If one sets "J :=

p
L(↵,�,C) d

2(J�1)(C+1)
, we have that if

n"
2
J > 2 logM

loc

F

 
"J

2(C + 1)p
L(↵,�, C)

, c

!
= 2 logM

loc

F

✓
d

2J�2
, c

◆
,

and a := exp(�n"2
J
) < 1/2 () n"

2
J
> log 2, the above probability in (2.57)

will be bounded from above by 2 exp(�n"2
J
/2). This condition is implied when

n"
2
J > 2 logM

loc

F

 
"J

2(C + 1)p
L(↵,�, C)

, c

!
_ log 2. (2.58)

We now have

k⌫⇤
J
� fk2  k⌥J

�⌥Jk2 + k⌥J � fk2  3"J
C + 1p

L(↵,�, C)
, (2.59)
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with probability at least 1 � 2 exp(�n"2
J
/2) which holds for all J satisfying

(2.58) (including J). Here we want to clarify that the last inequality in (2.59)
follows from the fact that k⌥

J
� ⌥Jk2  d/2

J�2, as seen when we verified
that ⌥ forms a Cauchy sequence in Lemma 2.38 (and since J � J). Let J

⇤

be selected as the maximum integer J such that (2.58) holds, or otherwise if
such J does not exist J

⇤
= 1, i.e. J

⇤ ⌘ J . Let ⌘ = 3
C+1p

L(↵,�,C)
, C = 2 and

C
0
= 1/2. We have established that the following bound holds

P(kf � ⌫⇤
J
k2 > ⌘"J)  C exp(�C 0

n"
2
J) (J > 1)  C exp(�C 0

n"
2
J) (J

⇤
> 1),

for all 1  J  J
⇤, where this bound also holds in the case when J

⇤
= 1 by

exception. Observe that we can extend this bound to all J 2 Z and J  J
⇤,

since for J < 1 we have ⌘"J � 6d and so

P(kf � ⌫⇤
J
k2 > ⌘"J)  0  C exp(�C 0

n"
2
J) (J

⇤
> 1).

We conclude that

P(kf � ⌫⇤
J
k2 > ⌘"J)  0  C exp(�C 0

n"
2
J) (J

⇤
> 1),

for any J  J
⇤. Now for any "J�1 > x � "J for J  J

⇤ we have that

P(kf � ⌫⇤
J
k2 > 2⌘x)  P(kf � ⌫⇤

J
k2 > ⌘"J�1)

 C exp(�C 0
n"

2
J�1) (J

⇤
> 1)

 C exp(�C 0
nx

2
) (J

⇤
> 1),

where the last inequality follows due to the fact that the map x 7! C exp(�C 0
nx

2
)

is monotonically decreasing for positive reals. We will now integrate the tail
bound:

P(kf � ⌫⇤
J
k2 > 2⌘x)  C exp(�C 0

nx
2
) (J

⇤
> 1), (2.60)

which holds true for x � "
⇤, where "J =

p
L(↵,�,C) d

2(J�1)(C+1)
, always (since even if

J
⇤
= 1 by exception, this bound is still valid). We then have

Ekf � ⌫⇤
J
k22 =

Z 1

0
2xP(kf � ⌫⇤

J
k2 > x) dx

 C
000
"
⇤2

+

Z 1

2⌘"⇤
2xC exp(�C 00

nx
2
) (J

⇤
> 1) dx

= C
000
"
⇤2

+ C
0000
n
�1

exp(�C 00000
n"

⇤2
) (J

⇤
> 1).

Now n"
⇤2 is bigger than a constant (i.e., log 2) otherwise J

⇤
= 1. Hence, the

above is smaller than C̄"
⇤2 for some absolute constant C̄.
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2.B.8 Proof of Theorem 2.20

Theorem 2.20 (Minimax rate). Define "⇤ := sup{" : n"2  logM
loc

F (", c)},
where c in the definition of local metric entropy is a sufficiently large absolute
constant. Then the minimax rate is given by "⇤2 ^ d

2 up to absolute constant
factors.

Proof of Theorem 2.20. First suppose that "⇤ satisfies n"⇤2 > 4 log 2. Then for
�
⇤
:= "

⇤
/

p
4(1/↵ _ 1) we have logM

loc

F (�
⇤
, c) � logM

loc

F ("
⇤
, c) � n"

⇤2
/2 +

n"
⇤2
/2 > 2n�

⇤2
/↵+ 2 log 2 and so this implies the sufficient condition for the

lower bound per Lemma 2.11. Let ⌘ :=
cp

L(↵,�,c/2�1)
^ 1. For a constant C

such that C⌘ > 1, we have

C
2
n"

⇤2 � 1/⌘
2
logM

loc

F (C⌘"
⇤
, c) � logM

loc

F (C⌘"
⇤
, c)

� logM
loc

F

 
C"

⇤ cp
L(↵,�, c/2� 1)

, c

!

Setting � := C"
⇤ we obtain that

n�
2 � logM

loc

F

 
�

cp
L(↵,�, c/2� 1)

, c

!
.

In addition since C > 1, � satisfies (2.11) (taking into account that n"
⇤2

>

4 log 2, which implies n�2 � 4 log 2C
2
> log 2). We note that the map 0 < x 7!

nx
2 � logM

loc

F

✓
x

cp
L(↵,�,c/2�1)

, c

◆
_ log 2 is non-decreasing by Lemma 2.15.

Now, with "J⇤ defined as per Theorem 2.19, this implies that � � "J⇤/2. This
shows that the rate in this case is of the order "⇤2.

Next, suppose that "⇤ defined by sup{" : n"
2  logM

loc

F (", c)} satisfies
n"

⇤2  4 log 2. For 2"
⇤, we have 16 log 2 � 4"

⇤2
n � logM

loc

F (2"
⇤
, c). If c in

the definition of local packing is large enough, we could put points in the
diameter of the ball with radius 2"

⇤ such that the packing set has more than
exp(16 log 2) many points. But that implies that the set F is entirely inside a
ball of radius

p
16 log 2 n

�1/2 (as "⇤2  (4 log 2)n
�1). To see the latter, one can

take the midpoint of the line segment connecting the endpoints of a diameter of
F and position a ball of radius 2"

⇤ there. In such a case, for the lower bound,
we could pick " to be proportional to the diameter of the set (with a small
proportionality constant). That will ensure that "

p
n is upper bounded by

some constant (as 2

p
(16 log 2) n

�1/2 is bigger than the diameter), and at the
same time logM

loc

F (", c) can be made bigger than a constant (provided that c

in the definition of a local packing is large enough) – by taking ✓ (where ✓ is the
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center of the localized set B2(✓, ")\F) to be the midpoint of a diameter of the
set K and then placing equispaced points on the diameter. Hence, the diameter
of the set is a lower bound (up to constant factors) in this case, which is of
course always an upper bound too (up to constant factors). So we conclude that
either for "⇤ defined by sup{" : "2n  logM

loc

F (", c)} satisfies "⇤2n > 4 log 2 or
the lower and upper bounds are of the order of the diameter of the set. In
summary the rate is given by the "⇤2 ^ d2. This is true since in the second case,
4"

⇤ is bigger than the diameter of the set.

2.B.9 Proof of Proposition 2.22

Proposition 2.22 (Extending results to F [0,�]
B

). Let F ⇢ F [0,�]
B

be a convex
class of densities, with at least one f↵ 2 F that is ↵-lower bounded, with
↵ > 0. Then the minimax rate in the squared L2-metric is "⇤2 ^ d

2, where
"
⇤ := sup{" : n"2  logM

loc

F (", c)}.

Proof of Proposition 2.22. We argue this as follows. Let f↵ 2 F , which is lower
bounded by some ↵ > 0. Now consider the following set of f↵-mixture densities,
i.e., F 0

= {(1/2)f↵ + (1/2)f : f 2 F} ⇢ F . By construction, all densities in F 0

are thus lower bounded by ↵/2, i.e. F 0 ⇢ F [↵/2,�]
B

. Moreover, F 0 forms a convex
density class. Hence, the minimax rate would be given by "

2 ^ diam2(F 0
)
2

where " = sup{" : n"2  logM
loc

F 0 (", c)}. We can artificially create variables
from the class F 0 by randomizing Xi as follows

Zi =

(
Ti

i.i.d.⇠ f↵ with probability 1/2,
Xi with probability 1/2.

Then let bf be our estimator of (1/2)f↵ + (1/2)f . We know:

EZk bf � ((1/2)f↵ + (1/2)f)k22 . "
2 ^ diam(F 0

)
2
,

so that

EX,T,V k(2 bf � f↵)� fk22 . 4"
2 ^ diam(F 0

)
2
,

where T = (T1, . . . , Tn) and V = (V1, . . . , Vn) are the values of the coin flips in
the definition of Zi. Hence, ET,V 2

bf � f↵ achieves the same rate for f since by
Jensen’s inequality

EY kET,V (2
bf � f↵)� fk22  EY,T,V k(2 bf � f↵)� fk22 . 4"

2 ^ diam(F 0
)
2
.

Moreover, note that since bf 2 F 0 for each of value of T, V we have ET,V 2
bf �

f↵ 2 F . Thus, the upper bound is the same for the two sets. On the
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other hand since F 0 ⇢ F the lower bound is also of the same rate. Finally,
observe that logM

loc

F 0 (", c) = logM
loc

F (2", c) so that the order of "⇤ = sup{" :
n"

2  logM
loc

F 0 (", c)} is the same as that of the equation "
⇤
= sup{" : n"2 

logM
loc

F (", c)}. In addition, it is also clear that 2 diam2(F 0
) = diam2(F).

2.B.10 Proof of Theorem 2.24

We first prove the following simple lemma.

Lemma 2.40. Suppose ⌫, µ 2 F are two densities such that k⌫ � ⌫k2  �. If
�  " then have M(⌫, ", c) M(µ, 2", 2c).

Proof of Lemma 2.40. It suffices to show that B(⌫, ") ✓ B(µ, 2"). For any
x 2 B(⌫, ") we have kx � ⌫k2  ", and hence by the triangle inequality we
obtain

kx� µk2  kx� ⌫k2 + k⌫ � µk2  "+ �  2",

which completes the proof.

Theorem 2.24 (Adaptive upper bound rate for the multistage sieve MLE
⌫
⇤
(X)). Let, ⌫⇤(X) = ⌥

J
be the output of the multistage sieve MLE which is

run for J iterations where J is defined as the maximal solution to

n"
2
J > 2 inf

f2F
M

adloc

F

 
f, 2"J

cp
L(↵,�, c/2� 1)

, 2c

!
_ log 2,

where "J :=

p
L(↵,�,c/2�1) d

2(J�2)c
and J = 1 if no such J exists10. Let J⇤ be defined

as the maximal integer J 2 N, such that "J :=

p
L(↵,�,c/2�1) d

2(J�2)c
such that11.,

n"
2
J > 2M

adloc

F

 
f, 2"J

cp
L(↵,�, c/2� 1)

, 2c

!
_ log 2, (2.12)

and J
⇤
= 1 if no such J exists. Then

Ek⌫⇤(X)� fk22  C̄"
⇤2
,

10Note that running the estimator with J many steps, may result into having non-finite
packing sets — that is not an issue however.

11Observe that by the definition of "
J

and (2.11) we have that some packing sets used in
the construction of the adaptive estimator may not be finite, but will be at most countable.
This follows from the L2-separability of F and is formalized in Lemma 2.34 in the appendix.
We note that the measurability of the adaptive estimator still holds as per Proposition 2.18
in this case.
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for some universal constant C̄, and where "⇤ := "J⇤. We remind the reader
that c := 2(C + 1) is the constant from the definition of local metric entropy,
which is assumed to be sufficiently large. Here C is assumed to satisfy (2.9),
and L(↵,�, C) is defined as per (2.10).

Proof of Theorem 2.24. Combining the results of Lemma 2.14 (with c := 2(C+

1) where c is the constant from the definition of local packing entropy) and
Lemma 2.15 we conclude that for each j 2 {2, . . . , J} we have

P
✓
kf �⌥jk2 >

d

2j�1

���� kf �⌥j�1k2 
d

2j�2
,⌥j�1

◆

 |P⌥j�1 | exp
✓
� nL(↵,�, C)d

2

22(j�1)(C + 1)2

◆
(2.61)

M(f,
d

2j�3
, 2c) exp

✓
� nL(↵,�, C)d

2

22(j�1)(C + 1)2

◆
(2.62)

M(f,
d

2J�3
, 2c) exp

✓
� nL(↵,�, C)d

2

22(j�1)(C + 1)2

◆
(2.63)

where P⌥j
are the maximal packing sets described in the construction of ⌫⇤(X).

Furthermore, inequality (2.62) follows from Lemma 2.40. Crucially, we observe
that the RHS of (2.63) does not depend on the conditioned random variables,
i.e., ⌥j�1, for each j 2 {2, . . . , J} hence we can drop ⌥j�1 from the conditioning.
Now let denote Aj := {kf �⌥jk2 > d

2j�1 }, for each integer j � 1. Then we can
proceed by working with the unconditional events Aj in (2.55).

Moreover, we then have that Ac

j�1 := {kf�⌥j�1k2  d

2j�2 } for each integer
j � 2. In particular P(Ac

1) = {kf �⌥1k2  d} = 1, since f,⌥1 2 F , so indeed
kf �⌥1k2  diam2 (F) =: d almost surely. By aligning our notation directly
with Lemma 2.39, we can apply the telescoping bound to P(Aj) as follows

P(AJ) := P
✓
kf �⌥Jk2 >

d

2J�1

◆
(by definition)

M
adloc

F

✓
f,

d

2J�3
, 2c

◆ J�1X

j=1

exp

✓
�nL(↵,�, C)d

2

22j(C + 1)2

◆
(per (2.55))

M
adloc

F

✓
f,

d

2J�3
, 2c

◆
a(1 + a

4�1
+ a

16�1
+ . . .) (J > 1) (2.64)

M
adloc

F

✓
f,

d

2J�3
, 2c

◆
a(1 + a+ a

2
+ . . .) (J > 1)

M
adloc

F

✓
f,

d

2J�3
, 2c

◆
a

1� a
(J > 1), (2.65)
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where for brevity in (2.64) we denote

a := exp

✓
� nL(↵,�, C)d

2

22(J�1)(C + 1)2

◆
.

Since C is assumed to satisfy (2.9), and L(↵,�, C) is defined as per (2.10), it
follows that a < 1. Note here that the above bound (2.65) holds, provided that
P(Ac

j
) > 0 for j < J as required by Lemma 2.39. Suppose that the RHS of

(2.65) is strictly smaller than 1. In that case for all j, P(Ac

j
) > 0 since bound

(2.65) holds inductively for all P(Aj) for j  J . On the other hand, if the RHS

of (2.65) is � 1 then (2.65) trivially holds. In both cases we conclude that
(2.65) holds.

If one sets "J :=

p
L(↵,�,C) d

2(J�1)(C+1)
, we have that if

n"
2
J > 2M

adloc

F

 
f, "J

4(C + 1)p
L(↵,�, C)

, 2c

!

and a := exp(�n"2
J
) < 1/2 () n"

2
J
> log 2, the above probability in (2.65)

will be bounded from above by 2 exp(�n"2
J
/2). This condition is implied when

n"
2
J > 2M

adloc

F

 
f, "J

4(C + 1)p
L(↵,�, C)

, 2c

!
_ log 2. (2.66)

We now have

k⌫⇤
J
� fk2  k⌥J

�⌥Jk2 + k⌥J � fk2  3"J
C + 1p

L(↵,�, C)
, (2.67)

with probability at least 1 � 2 exp(�n"2
J
/2) which holds for all J satisfying

(2.66). Here we want to clarify that the last inequality in (2.67) follows from
the fact that k⌥

J
�⌥Jk2  d/2

J�2, as per Lemma 2.38 (and since J � J). Let
J
⇤ be selected as the maximum integer J such that (2.66) holds, or otherwise

if such J does not exist J
⇤
= 1. Let ⌘ = 3

C+1p
L(↵,�,C)

, C = 2 and C
0
= 1/2.

Observe that by the definition of J⇤ it follows that all packing sets encountered
prior J

⇤, will have been finite packing sets. We have established that the
following bound holds

P(kf � ⌫⇤
J
k2 > ⌘"J)  C exp(�C 0

n"
2
J) (J > 1)  C exp(�C 0

n"
2
J) (J

⇤
> 1),

for all 1  J  J
⇤, where this bound also holds in the case when J

⇤
= 1 by

exception. Observe that we can extend this bound to all J 2 Z and J  J
⇤,

since for J < 1 we have ⌘"J � 6d and so

P(kf � ⌫⇤
J
k2 > ⌘"J)  0  C exp(�C 0

n"
2
J) (J

⇤
> 1).
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We conclude that

P(kf � ⌫⇤
J
k2 > ⌘"J)  0  C exp(�C 0

n"
2
J) (J

⇤
> 1),

for any J  J
⇤. Now for any "J�1 > x � "J for J  J

⇤ we have that

P(kf � ⌫⇤
J
k2 > 2⌘x)  P(kf � ⌫⇤

J
k2 > ⌘"J�1)

 C exp(�C 0
n"

2
J�1) (J

⇤
> 1)

 C exp(�C 0
nx

2
) (J

⇤
> 1),

where the last inequality follows due to the fact that the map x 7! C exp(�C 0
nx

2
)

is monotonically decreasing for positive reals. We will now integrate the tail
bound:

P(kf � ⌫⇤
J
k2 > 2⌘x)  C exp(�C 0

nx
2
) (J

⇤
> 1), (2.68)

which holds true for x � "
⇤, where "J =

p
L(↵,�,C) d

2(J�1)(C+1)
, always (since even if

J
⇤
= 1 by exception, this bound is still valid). We then have

Ekf � ⌫⇤
J
k22 =

Z 1

0
2xP(kf � ⌫⇤

J
k2 > x) dx

 C
000
"
⇤2

+

Z 1

2⌘"⇤
2xC exp(�C 00

nx
2
) (J

⇤
> 1) dx

= C
000
"
⇤2

+ C
0000
n
�1

exp(�C 00000
n"

⇤2
) (J

⇤
> 1).

Now n"
⇤2 is bigger than a constant (i.e., log 2) otherwise J

⇤
= 1. Hence, the

above is smaller than C̄"
⇤2 for some absolute constant C̄.

Remark 2.41 (Early stopping in adaptive estimation). Suppose that in our
adaptive estimation, that we traverse the maximal packing set tree construction
and encounter a density ⌥i, such that the cardinality of the set of its children
densities is countably infinite, i.e., |P⌥i

| = 1. Then we can simply return
⌫
⇤
(X) = ⌥i, in such a case. The reason for this is that the index i will be

necessarily at least equal to J
⇤ as defined in (2.12), which is what is required

for (2.67) to hold.
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2.C Proofs of Section 2.3

2.C.1 Formal justification for Example 2.25

Before proving Examples 2.25 to 2.27, we first prove a useful lemma. This
lemma will provide a sufficient condition to ensure that L2-local and L2-global
metric entropies are of the same order for various forms of the density class F ,
as specified in our chosen examples.

Lemma 2.42 (Asymptotic order global metric entropy). Let F ⇢ F [↵,�]
B

, such
that for any fixed ⌘ > 0, we have 0 < " 7! logM

glo

F (") ⇣ "
�1/⌘. Then there

exists a c > 0, such that the following holds

logM
glo

F ("/c)� logM
glo

F (") ⇣ logM
glo

F ("/c) (2.69)

Proof of Lemma 2.42. We firstly note that (2.69) has the following equivalence

logM
glo

F ("/c)� logM
glo

F (") ⇣ logM
glo

F ("/c)

() 90 < k1 < k2 s.t. k1 logM
glo

F ("/c)  logM
glo

F ("/c)� logM
glo

F (")  k2 logM
glo

F ("/c)

(2.70)

In general, for Equation (2.70) we observe that since logM
glo

F ("/c) > 0, it
follows that logMglo

F ("/c)� logMglo

F (")  logM
glo

F ("/c). So taking k2 = 1 will
always suffice to ensure (2.70) holds. It remains to check that we can also find
a k1 2 (0, 1) such that (2.70) also holds. In our case, since logM

glo

F (") ⇣ "�1/⌘

by assumption, we have that logM
glo

F ("/c) � C1("/c)
�1/⌘ and logM

glo

F (") 
C2"

�1/⌘ for some universal constants C1, C2 > 0. It then follows

logM
glo

F ("/c)� logM
glo

F (")

logM
glo

F ("/c)

� 1�
✓
C2

C1

◆
c
� 1

⌘

� k1 (as required, for k1 2 (0, 1))
=: 1� � (for some � 2 (0, 1), since k1 2 (0, 1))

if c �
✓

C2

C1�

◆
⌘

. (2.71)

That is, there exists such a k1 2 (0, 1), if we choose c �
⇣

C2
C1�

⌘
⌘

, for each ⌘ > 0.
So indeed (2.69) holds, for the specified class F , as required.

Example 2.25 (Lipschitz density class F). Let 1 <  < � <1, max {1/q � 1/2, 0} <

�  1, and 1  q  1 be fixed constants, and B := [0, 1]. Now, let
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F := Lip�,q( ) denote the space of (�, q, )-Lipschitz densities with total
variation at most �. That is,

Lip�,q( ) :=

⇢
f : B ! [0, ]

���� kf(x+ h)� f(x)kq   h� , kfkq   ,
Z

B

f dµ = 1, f measurable
�
,

(2.15)
and kfkq :=

�R
B
|f(x)|q dµ

�1/q. Note that in (2.15) we have that x 2 B, and
only consider h > 0 such that x+ h 2 B, so that the predicate of Lip�,q( ) is
well-defined. Then Lip�,q( ) is a convex density class, there exists a density
f↵ 2 Lip�,q( ) that is strictly positively bounded away from 0, and the minimax
rate (in the squared L2-metric) for estimating f 2 Lip�,q( ) is of the order

n
� 2�

2�+1 .

Proof of Example 2.25. In order to establish the minimax rate for Lip�,q( ),
we need to show that Lip�,q( ) is a convex density class, and that there exists
a density f↵ 2 Lip�,q( ) that is strictly positively bounded away from 0. We
can then apply Proposition 2.22. We first verify that Lip�,q( ) here is a convex
density class. To that end, let f, g 2 Lip�,q( ), and let  2 [0, 1], be arbitrary.
Then for each x 2 B := [0, 1], we observe that

(f + (1� )g)(x) := f(x) + (1� )g(x) � (0) + (1� )(0) = 0 (2.72)
(f + (1� )g)(x) := f(x) + (1� )g(x)   + (1� ) =  (2.73)

From (2.72) and (2.73), it follows that

f + (1� )g : B ! [0, ]. (2.74)

Moreover, since
R
B
f dµ =

R
B
g dµ = 1, we have

Z

B

(f + (1� )g) dµ = 

Z

B

f dµ+ (1� )
Z

B

g dµ = 1. (2.75)

Since f, g 2 Lip�,q( ), we have both kfkq, kgkq   . Then by the triangle
inequality it follows

kf + (1� )gkq  kfkq + k(1� )gkq   + (1� ) =  . (2.76)

Since f, g are measurable functions, then so is their convex combination, i.e.,
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f + (1� )g. Now we observe

k(f + (1� )g)(x+ h)� (f + (1� )g)(x)kq
= k(f(x+ h)� f(x)) + (1� )(g(x+ h)� g(x))kq
 k(f(x+ h)� f(x))kq + k(1� )(g(x+ h)� g(x))kq

(by the triangle inequality.)
 h� + (1� )h� (since f, g 2 Lip�,q( ))
= h

�
, (2.77)

as required. Combining (2.74),(2.75),(2.76), and (2.77) we have shown that
f + (1� )g 2 Lip�,q( ). This proves the convexity of Lip�,q( ), as required.

Now let f↵ ⇠ Unif[B], i.e. f↵(x) := I[0,1](x). Therefore, kf↵(x + h) �
f(x)kq = 0   h� , for each x 2 B, and h > 0 such that f↵(x+ h) is defined.
Moreover, kf↵(x)kq = 1 <  , by assumption, for each 1  q  1. Now we
have that

R
B
f↵ dµ =

R
B
I[0,1](x) dµ(x) = 1, and f is measurable since it is

a simple function. So indeed we have found f↵ 2 Lip�,q( ), such that it is
↵-lower bounded (with ↵ = 1).

We now proceed to check that L2-global metric entropy is of the same order
as the L2-local metric entropy for Lip�,q( ). That is, we want to check that
(2.69) holds. Here F = Lip�,q( ), with 0 < " 7! logM

glo

F (") ⇣ "
�1/� . Thus,

we can apply Lemma 2.42 with ⌘ := � 2 (0, 1] to conclude that indeed (2.69)
holds, as required.

Since we have checked all the sufficient conditions in order to apply Propo-
sition 2.22 for Lip�,q( ), we can obtain the minimax rate of density estimation
by solving

n"
2 ⇣ "�

1
� () " ⇣ n

� �

2�+1 () "
2 ⇣ n

� 2�
2�+1 . (2.78)

So the minimax rate is (up to constants) the order of n� 2�
2�+1 as required.

2.C.2 Formal justification for Example 2.26

Example 2.26 (Bounded total variation density class F). Let 1 < ⇣ < � <1
be a fixed constant, and B := [0, 1]. Now, let F := BV⇣ denote the space of
univariate densities with total variation at most �. That is,

BV⇣ :=

⇢
f : B ! [0, ⇣]

���� kfk1  ⇣, V (f)  ⇣,
Z

B

f dµ = 1, f measurable
�
,

(2.16)
where we define the total variation of f , i.e., V (f) as

V (f) := sup

{x1,...,xm | 0x1<···<xm1,m2N}

m�1X

i=1

|f (xi+1)� f (xi) |, (2.17)
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and kfk1 := supx2B |f(x)|. Then the minimax rate (in the squared L2-metric)
for estimating f 2 BV⇣ is of the order n

�2/3.

Proof of Example 2.26. In order to establish the minimax rate for BV⇣ , we
need to show that BV⇣ is a convex density class, and that there exists a density
f↵ 2 BV⇣ that is strictly positively bounded away from 0. We can then apply
Proposition 2.22. We first verify that BV⇣ here is a convex density class.
To that end, let f, g 2 BV⇣ , and let  2 [0, 1], be arbitrary. Then for each
x 2 B := [0, 1], it follows by an identical argument to (2.72) and (2.73) that

f + (1� )g : B ! [0, ⇣]. (2.79)

Moreover, since
R
B
f dµ =

R
B
g dµ = 1, we have

Z

B

(f + (1� )g) dµ = 

Z

B

f dµ+ (1� )
Z

B

g dµ = 1. (2.80)

Since f, g 2 BV⇣ , we have both kfk1, kgk1  ⇣. Then by the triangle
inequality it follows

kf + (1� )gk1  kfk1 + k(1� )gk1  ⇣ + (1� )⇣ = ⇣. (2.81)

Since f, g are measurable functions, then so is their convex combination, i.e.,
f + (1� )g. Finally, fix any m 2 N, and let a  x1 < · · · < xm  b be any
fixed partition of B. Now we observe

m�1X

i=1

|(f + (1� )g) (xi+1)� (f + (1� )g) (xi) |

=

m�1X

i=1

|(f(xi+1)� f(xi)) + (1� )(g(xi+1)� g(xi))|

 
m�1X

i=1

|f(xi+1)� f(xi)|+ (1� )
m�1X

i=1

|g(xi+1)� g(xi)|

(by the triangle inequality.)
 V (f) + (1� )V (g)

 (⇣) + (1� )(⇣) (since V (f), V (g)  ⇣, by definition of BV⇣ .)
= ⇣.

Taking the supremum over all m 2 N and all partitions of length m of B of
the LHS sum we obtain:

V (f + (1� )g)  ⇣, (2.82)
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as required. Combining (2.79),(2.80),(2.81), and (2.82) we have shown that
f + (1� )g 2 BV⇣ . This proves the convexity of BV⇣ , as required.

Similar to the proof of Example 2.25, we let f↵ ⇠ Unif[B], i.e. f↵(x) :=

I[0,1](x). Therefore, kfk1 = 1  ⇣ by assumption. Also, V (f) = 0 < ⇣, by
assumption. Now we have that

R
B
f↵ dµ =

R
B
I[0,1](x) dµ(x) = 1, and f is

measurable since it is a simple function. So indeed we have found f↵ 2 BV⇣ ,
such that it is ↵-lower bounded (with ↵ = 1).

We now proceed to check that L2-global metric entropy is of the same order
as the L2-local metric entropy for BV⇣ . That is, we want to check that (2.69)
holds. Here F = BV⇣ , with 0 < " 7! logM

glo

F (") ⇣ "
�1. Thus, we can apply

Lemma 2.42 with ⌘ := 1 to conclude that indeed (2.69) holds, as required.
Since we have checked all the sufficient conditions in order to apply Propo-

sition 2.22 for BV⇣ , we can obtain the minimax rate of density estimation by
solving

n"
2 ⇣ "�1 () " ⇣ n

� 1
3 () "

2 ⇣ n
� 2

3 . (2.83)

So the minimax rate is (up to constants) the order of n� 2
3 as required.

2.C.3 Formal justification for Example 2.27

Example 2.27 (Quadratic functional density class F). Let 0 < ↵ < 1 < � <

1, and � > 1 be fixed constants, with B := [0, 1]. Now, let F := Quad� denote
the space of univariate quadratic functional densities. That is,

Quad� :=

⇢
f : B ! [↵,�]

���� kf
00k1  �,

Z

B

f dµ = 1, f measurable
�
. (2.18)

Then Quad� is a convex density class, there exists a density f↵ 2 Quad� that is
strictly positively bounded away from 0, and the minimax rate (in the squared
L2-metric) for estimating f 2 Quad� is of the order n

�4/5.

Proof of Example 2.27. In order to establish the minimax rate for Quad� , we
need to show that Quad� is a convex density class. We can then apply Proposi-
tion 2.22. We first verify that Quad� here is a convex density class. To that end,
let f, g 2 Quad� , and let  2 [0, 1], be arbitrary. Then for each x 2 B := [0, 1],
it follows by an identical argument to (2.72) and (2.73) that

f + (1� )g : B ! [0,�]. (2.84)

Moreover, since
R
B
f dµ =

R
B
g dµ = 1, we have

Z

B

(f + (1� )g) dµ = 

Z

B

f dµ+ (1� )
Z

B

g dµ = 1. (2.85)
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Since f, g are measurable functions, then so is their convex combination, i.e.,
f + (1� )g. Now we observe

k(f + (1� )g)00k1 = kf 00
+ (1� )g00k1 (by linearity of 2nd derivative.)

 kf 00k1 + k(1� )g00k1
(by the triangle inequality.)

= kf 00k1 + (1� )kg00k1
 � + (1� )� (since f, g 2 Quad�)
= �, (2.86)

as required. Combining (2.84),(2.85), and (2.86) we have shown that f +(1�
)g 2 Quad� . This proves the convexity of Quad� , as required.

Similar to the proof of Example 2.25, we let f↵ ⇠ Unif[B], i.e. f↵(x) :=

I[0,1](x). Since kf 00k1 = 0  �. Here, for the boundary points of B :=

[0, 1], we are careful to take all derivatives of f↵(x) at x = 0 from the right,
and all derivatives from the left at x = 1. Now we have that

R
B
f↵ dµ =R

B
I[0,1](x) dµ(x) = 1, and f is measurable since it is a simple function. So

indeed we have found f↵ 2 Quad� , such that it is ↵-lower bounded (with
↵ = 1).

We now proceed to check that L2-global metric entropy is of the same order
as the L2-local metric entropy for Quad� . That is, we want to check that (2.69)
holds. Here F = Quad� , with 0 < " 7! logM

glo

F (") ⇣ "
�1/4. Thus, we can

apply Lemma 2.42 with ⌘ := 4 to conclude that indeed (2.69) holds, as required.
Since we have checked all the sufficient conditions in order to apply Propo-

sition 2.22 for Quad� , we can obtain the minimax rate of density estimation by
solving

n"
2 ⇣ "�

1
2 () " ⇣ n

� 2
5 () "

2 ⇣ n
� 4

5 . (2.87)

So the minimax rate is (up to constants) the order of n� 4
5 as required.

2.C.4 Formal justification for Example 2.28

Example 2.28 (Convex mixture density class F). Let F := Convk where

Convk :=

(
kX

i=1

↵ifi

�����

kX

i=1

↵i = 1,↵i � 0, fi 2 F [↵,�]
B

)
, (2.19)

for some fixed k 2 N and fi 2 F [↵,�]
B

for each i 2 [k]. Further, let G =

(Gij)i,j2[k] denote the Gram matrix with Gij :=
R
B
fifjµ( dx), which we

assume is positive definite, i.e., G � 0. Then the minimax rate for estimating
f 2 Convk is bounded from above by

q
k

n
up to absolute constant factors.
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Proof of Example 2.28. Let G = (Gij)i,j2[k] denote the Gram matrix Gij :=R
B
fifjµ( dx). Then it is simple to see that for some point ✓ 2 F which can be

represented as the convex combination ✓ =
P

i2[k] ↵ifi, the packing set should
consist of functions gi =

P
j2[k] �ijfj satisfying both

(↵� �i)TG(↵� �i)  "2,
(�i � �j)TG(�i � �j) > "

2
/c

2
, for i 6= j,

where �i are vectors from the k-dimensional unit simplex, i.e.,
P

j2[k] �ij = 1,
�ij � 0. Now suppose that G � 0. Then upon substituting ↵

0
=
p
G ↵,

�
0
i
=
p
G �i and dropping the simplex requirements on the � we obtain the set

k↵0 � �0ik  "
k�0i � �0jk > "/c,

which is like packing the unit sphere at a distance 1/c. Hence, the log cardinality
of such a packing is always . k (Wainwright, 2019, see Chapter 5). If k is not
allowed to scale with n, we conclude therefore that the minimax rate is upper
bounded by n

�1/2 which is the parametric rate as we would expect. If k is
allowed to scale with n the rate is smaller than

q
k

n
.
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Three

Adversarial Sign-Corrupted Isotonic
Regression

Abstract: Classical univariate isotonic regression involves nonparamet-
ric estimation under a monotonicity constraint of the true signal. We
consider a variation of this generating process, which we term adversar-
ial sign-corrupted isotonic (ASCI) regression. Under this ASCI setting,
the adversary has full access to the true isotonic responses, and is free
to sign-corrupt them. Estimating the true monotonic signal given these
sign-corrupted responses is a highly challenging task. Notably, the sign-
corruptions are designed to violate monotonicity, and possibly induce heavy
dependence between the corrupted response terms. In this sense, ASCI
regression may be viewed as an adversarial stress test for isotonic regres-
sion. Our motivation is driven by understanding whether efficient robust
estimation of the monotone signal is feasible under this adversarial setting.
We develop ASCIFIT, a three-step estimation procedure under the ASCI
setting. The ASCIFIT procedure is conceptually simple, easy to implement
with existing software, and consists of applying the PAVA with crucial
pre- and post-processing corrections. We formalize this procedure, and
demonstrate its theoretical guarantees in the form of sharp high probability
upper bounds and minimax lower bounds. We illustrate our findings with
detailed simulations.

The work in this chapter was done jointly with Matey Neykov. It is
based on a preprint with the title “Adversarial Sign-Corrupted Isotonic
Regression”.
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3.1 Introduction

Isotonic regression is a classically studied nonparametric regression problem in
which the underlying signal satisfies a monotonicity constraint. In the univariate
case, this regression setup provides a flexible nonparametric generalization to
simple linear regression. That is, the underlying signal may be non-linear, but
still satisfies monotonicity as in the simple linear model. The classically studied
isotonic regression generating process is formally described in Definition 3.1:

Definition 3.1 (Classical isotonic regression). We consider n observations,
{Yi | i 2 [n]}, where each observation Yi is generated from the following model:

Yi = µi + "i (3.1)
s.t. µ1  µ2  . . .  µn (3.2)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.3)

The statistical goal under this classical setup is to estimate the underly-
ing signal vector µ := (µ1, . . . , µn)

>, subject the monotonicity constraint in
Equation (3.2), while � is an unknown (nuisance) parameter. Throughout this
paper we will adopt the convention, without loss of generality, that the signal
vector is monotonically increasing (as per Equation (3.2)). Additionally we will
assume that all estimation errors are computed under square loss (in Euclidean
metric), in high probability.

3.1.1 Adversarial sign-corrupted isotonic (ASCI) regression

Our work in this paper is motivated by a variation of the classical isotonic re-
gression estimation problem, per Definition 3.1. We refer to this newly proposed
model as adversarial sign-corrupted isotonic (ASCI) regression. The generating
process for this ASCI estimation problem is formalized in Definition 3.2.

Definition 3.2 (Adversarial sign-corrupted isotonic (ASCI) regression). We
consider n observations, {Ri | i 2 [n]}, where each observation Ri is generated
from the following model:

Ri = ⇠i(µi + "i) (3.4)
s.t. 0 < ⌘  µ1  µ2  . . .  µn (3.5)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.6)
and ⇠i 2 {�1, 1} (3.7)
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Remark 3.3. We note that the constant ⌘ > 0 is known to the observer and
adversary as part of the generating process. This means that the true signal is
positive, since it is uniformly bounded away from ⌘. It is an artefact of our
method but as we will see later in Examples 3.5 and 3.7, highly non-trivial
estimation tasks are still contained under this constraint.

Remark 3.4. Throughout this paper we will interchangeably use the terms ASCI
regression, setting, setup, model, and generating process to refer to Definition 3.2.

By comparing Definitions 3.1 and 3.2, this ASCI regression generating
process is a partial generalization of the classical isotonic regression. It can be
briefly described as follows. Here the classical isotonic regression responses,
µi+"i in Equation (3.1), are sign-corrupted in a manner chosen by an adversary,
as captured by the multiplicative ⇠i terms. Here the ⇠i 2 {�1, 1} are sign-
corruptions for the true data generating process, i.e., Yi := µi + "i. It is
important to note that the ⇠i 2 {�1, 1} for each i 2 [n], are chosen given
that the adversary has full access to the true responses, i.e., {µi + "i | i 2 [n]}.
As such, Equation (3.1) in the classical isotonic regression setup represents
a special case of Equations (3.4) and (3.7) by taking ⇠i

a.s.
= 1 for each i 2 [n].

However, we note that in this ASCI setting, in Equation (3.5) the monotonically
increasing signal vector µ := (µ1, . . . , µn)

> is bounded below by ⌘, which is
some fixed and known positive constant. As such this represents a restriction
of the classical isotonic regression condition described in Equation (3.2). In
summary, ASCI regression represents both a restriction and relaxation of the
classical isotonic regression generating process. We will see why the restriction
is necessary in this work, but we will later suggest possible ways in which it
can be relaxed in future work.

3.1.2 Interesting special cases of ASCI regression

Interestingly, we note that even some special cases of this ASCI regression
setup can result in highly non-trivial estimation tasks. Two particular ASCI
regression special cases are formalized in Examples 3.5 and 3.7.

Example 3.5 (Two-component Gaussian mixture ASCI regression special
case). We consider n observations, {Ri | i 2 [n]}, where each observation Ri is
generated from the following model:

Ri = ⇠iµi + "i (3.8)
s.t. 0 < ⌘  µ1  µ2  . . .  µn (3.9)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.10)

and ⇠i
i.i.d.⇠ Rademacher(p), p 2 (0, 1), and ⇠i ?? "i (3.11)
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Remark 3.6. Note that ⇠i
i.i.d.⇠ Rademacher(p) for each i 2 [n], means that

⇠i = +1 with probability p, and ⇠i = �1 with probability 1� p. We note that
the model defined in Example 3.5 is a special case of Definition 3.2. This is
formally proved in Section 3.B.3.

We note that in the univariate setting, Example 3.5 represents a gener-
alization of the two-component Gaussian mixture model studied in detail in
Balakrishnan et al. (2017, Section 3.2.1). Our model generalizes their setting
in the sense that we allow a different mean, i.e., µi, for each of the n univariate
observations. Interestingly, in this more general univariate mixture setting, our
proposed ASCIFIT estimator (see Section 3.2) provides an efficient alternative
to the EM algorithm (Dempster et al., 1977). Such models have extensive
applications, e.g., community detection (Royer, 2017; Giraud and Verzelen,
2018).

Example 3.7 (Non-convex ASCI regression special case). We consider n

observations, {Ri | i 2 [n]}, where each observation Ri is generated from the
following model:

Ri = �i + "i (3.12)
s.t. 0 < ⌘  |�1|  |�2|  . . .  |�n| (3.13)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.14)

Remark 3.8. Verifying that Example 3.7 is a special case of Definition 3.2 is
not a priori obvious, and is formally proved in Section 3.B.4.

In Example 3.7, one can think of this model being generated from the ASCI
model as per Definition 3.2. In this special case, the adversary randomly chooses
sign-corruptions independently of the error terms, i.e., ⇠i ?? "i for each i 2 [n].
Under this setup, the resulting response term in Equation (3.12) is the same as
the classical isotonic regression response, as seen by comparing to Equation (3.1).
However, interestingly the adversarial sign-corruption is now absorbed into
the revised monotonicity constraint 0 < ⌘  |�1|  |�2|  . . .  |�n|, per
Equation (3.13). As a result, this generating process is a highly non-convex
constrained estimation problem. In this case ASCIFIT will allow one to recover
|�i|, where as PAVA will not provide any information on the |�i| (or �i), given
the non-convex constraint.

3.1.3 Motivation and focus of our work

With the ASCI regression setup clearly defined, we turn our attention to
describing the focus of our analysis in this work. This is summarized by the
following core question of interest:
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Core question: Given the adversarial sign-corrupted iso-
tonic (ASCI) regression setup in Definition 3.2, can we find
a computationally efficient estimator for µ, and demonstrate
its precise (non-asymptotic) statistical optimality?

To the best of our knowledge the ASCI model, and our core question of
interest, have not been explicitly studied before in the literature. We note that
this ASCI estimation problem is inherently challenging, and thus interesting,
for three main reasons, i.e., Challenge I – Challenge III:

Challenge I (Dependent responses): in this estimation problem the adver-
sary is free to choose the sign-corruption terms ⇠i, after observing all samples,
possibly resulting in a strong dependence between the original isotonic responses.
As such, any ASCI estimator must be able to handle arbitrary dependence
structure between the sign-corrupted responses.

Challenge II (Violating signal monotonicity): qualitatively speaking,
the sign-corruptions are in a sense ‘extreme’ in that by selectively changing
the sign of the observations the adversary fundamentally ‘attacks’ the isotonic
monotonicity constraint directly. It is this convex monotone constraint which
classical isotonic estimators, i.e., PAVA, are designed to exploit.

Challenge III (Interesting special cases): The ASCI setting contains
interesting non-trivial special cases as described in Examples 3.5 and 3.7.
Naively applying typical least squares estimation techniques will be unable to
provide any relevant information on the estimated quantity of interest.

Given these three formidable challenges posed by ASCI regression, any
computationally and statistically efficient estimator here needs to utilize new
techniques to exploit the potential non-convex structure in our setting. Our
motivations here are thus driven by understanding the robustness of existing
isotonic regression estimators under such adversarial settings. Moreover, for
the ASCI setting to be worth studying, we wanted ensure practical algorithms
for estimation under this adversarial setting, with sharp minimax (worst-case)
statistical guarantees, both of which we were able to provide. We thus view the
ASCI setting as stimulating prototype for more such research into adversarial
robustness in isotonic regression.

3.1.4 Prior and related work

As noted, to the best of knowledge our core question of interest, i.e., isotonic
regression under the proposed ASCI setup, has not been previously studied. Our
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work however builds on and utilizes known estimators from the classical isotonic
regression literature. As such we limit our prior and related work summary on
known risk bounds (and rates) for such isotonic regression estimators, and the
efficient algorithms (i.e., the PAVA) and practical implementations thereof.

Isotonic regression (classical):

A lively historical overview of isotonic regression estimation from a com-
putational lens is given in de Leeuw et al. (2009, Section 1). In brief, we
note that the origins of isotonic regression can be traced back to a number
of independently written papers in the 1950s. In particular it was studied by
Brunk (1955); Ayer et al. (1955). Such estimators for “ordered parameters”
were also analyzed in the series of papers van Eeden (1956, 1957a,b,c) which
culminated into a PhD thesis in by the same author (van Eeden, 1958). Shortly
thereafter the articles (Bartholomew, 1959a,b) also investigated the related idea
of hypothesis testing under monotonicity constraints. We refer the interested
reader to the classical comprehensive references Barlow et al. (1972); Robertson
et al. (1988), for further reading.

The classical isotonic regression setup per Definition 3.1 under square loss
is a convex optimization problem. As such, it has a unique solution, i.e.,
the Euclidean projection onto the closed convex monotone cone given by the
constraint in Equation (3.2). In this case, the non-asymptotic risk bounds for
the least squares estimator (LSE) of the monotone parameters µi are of the
order n

�2/3 in sample complexity. This convergence rate has been established
across a number of papers including van de Geer (1990, 1993); Donoho (1990);
Birgé and Massart (1993b); Wang (1996); Meyer and Woodroofe (2000); Zhang
(2002); Chatterjee et al. (2015). Broadly speaking, these results typically vary in
the generality of their underlying assumptions on the normality or independence
of the error terms in classical isotonic regression. As noted in the excellent
recent survey Guntuboyina and Sen (2018), the same risk rate for this (and for
more general) LSEs was established using an alternative approach in Chatterjee
(2014). Moreover, in the case of minimax lower bounds, the matching risk rate
(up to constant terms) for isotonic regression was established in Chatterjee
et al. (2015) and also in Bellec and Tsybakov (2015), in both high probability
and expectation terms.

Pool Adjacent Violators Algorithm (PAVA):

Rather remarkably, despite the nonparametric setup of classical isotonic
regression, the LSE in this case has an explicit ‘max-min’ formulation (Barlow
et al., 1972, Equation (1.9)). However, in practice it is efficiently computed
using the pool adjacent violators algorithm (PAVA). As described in Tibshirani
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et al. (2011) the PAVA in effect estimates the ordered parameters by scanning
through the (sorted) observations. For each adjacent pair of observations,
the monotonicity constraint is checked. If the constraint is ‘violated’ by a
given observation, the average of the observations is used as the estimate, with
appropriate (minimal) backtracking to ensure that any restrospectively incurred
violations are similarly corrected for. Efficient PAVA implementations, e.g., as
described in Grotzinger and Witzgall (1984); Best and Chakravarti (1990),
have a computational complexity of O (n), where n is the sample size. Since
we will use the PAVA in just one step in our proposed three-step estimator for
the ASCI regression parameter µ, we will not detail it further here. However,
such open-source PAVA implementation details can be found in de Leeuw et al.
(2009); Pedregosa et al. (2011).

3.1.5 Main contributions

Our contributions in this paper are twofold and are summarized as follows:

• Computable estimators with non-asymptotic upper bounds: We
propose a computationally efficient three-step algorithm ASCIFIT, to
estimate the required parameter µ, under the ASCI setting. Our ASCIFIT
estimator converges at a n

�2/3 rate, with high probability. We illustrate
our findings with extensive numerical simulations.

• Sharp minimax lower bounds: we provide matching high probability
lower bounds (up to constant and log factors) under square loss, and thus
demonstrate that our estimators are minimax optimal in this sense.

In particular, our upper bound proofs involve rather subtle theoretical
details about the PAVA, and our use of method of moment techniques is quite
unique in this literature. We believe these proof techniques will be of inde-
pendent interest to researchers in isotonic regression. In particular, for similar
adversarial estimation tasks, where traditional convex M-estimation techniques
are infeasible.

3.1.6 Organization of the paper

The rest of this paper is organized as follows. In Section 3.2 we introduce
ASCIFIT, our three-step estimation procedure for µ. In Section 3.3 we provide
high probability upper bounds on estimation rates using ASCIFIT. In Section 3.4
we establish sharp minimax lower bounds for the parameter estimation in our
ASCI setting. In Section 3.5 we provide extensive numerical ASCI simulations,
to illustrate our findings. In Section 3.6 we summarize our results and describe
exciting future research directions.
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3.1.7 Notation

Throughout this paper, we typically use lowercase for scalars in R, e.g.,
(x, y, z, . . .), bold lowercase for vectors, e.g., (x,y, z, . . .), and bold uppercase for
matrices, e.g., (X,Y,Z, . . .). We use . and & to mean  and �, respectively,
up to positive universal constants. We denote a _ b := max {a, b} for each
a, b 2 R. We say that a sequence an := O (1) if there exists C > 0, N 2 N
such that |an| < C for each n > N . Similarly, an = O (bn) iff an

bn
= O (1). We

say that a sequence an = o (1) if an ! 0 as n!1. Similarly, an = o (bn) iff
an

bn
= o (1). We denote the finite set {1, . . . , n} by [n]. We define the indicator

function I⌦(x) to take the value 1 when x 2 ⌦ ✓ Rd, and 0 otherwise. We
say that a function f : ⌦ ! R is increasing, if for all u, v 2 ⌦ ⇢ R such
that u  v, implies f(u)  f(v). We use strictly increasing in the case where
these inequalities are strict. Similarly we note that f is decreasing (or strictly
decreasing) when these respective inequalities are reversed. We provide a useful
notation summary table in Section 3.A.1.

3.2 ASCIFIT: A three-step estimation procedure for µ

As per our core question of interest, we now turn our attention to ASCIFIT,
i.e. our proposed estimation procedure for µ, under the ASCI setup. The
Folded Normal distribution, and in particular its mean and variance, will be
fundamental to ASCIFIT. As such, we first formalize the key properties of the
Folded Normal distribution in Definition 3.9.

Definition 3.9 (Folded Normal distribution). Suppose R ⇠ N (µ,�
2
), and

let T := |R|. We then say that T ⇠ FoldNorm(µ,�), is a Folded Normal
distribution. We denote the mean and variance of T , by f(µ,�) and g(µ,�),
respectively. They are given as follows:

f(µ,�) := E (T ) = �

p
2/⇡ exp(�µ2

/(2�
2
))� µ(1� 2�(µ/�)). (3.15)

g(µ,�) := V (T ) = µ
2
+ �

2 � f(µ,�)
2
. (3.16)

Remark 3.10. We refer the reader to Tsagris et al. (2014); Elandt (1961) for
more details. We only consider µ > ⌘ > 0 per Equation (3.5), and we use the
shorthand notation f(µ,�)

2 := (f(µ,�))
2.

We now describe ASCIFIT, our three-step procedure to estimate µ under
the ASCI setting, as follows:
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3.2. ASCIFIT: A three-step estimation procedure for µ

ASCIFIT: Three-step procedure to estimate µ under the ASCI setting

Step I (Pre-processing and PAVA):
Obtain an initial naive estimate of µ := (µ1, . . . , µn)

> by fitting isotonic
regression (using the PAVA) on Ti := |Ri|. Denote these estimates by
bµnaive := ( bT1, . . . ,

bTn)
>.

Step II (Second moment matching):

Estimate � in the following way. Pick the � solving the following equation,
and denote the corresponding solution as b�:

G(�) := �
2
+

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�))
2
=

1

n

nX

i=1

T
2
i . (3.17)

Here f
�1

(·,�), denotes the inverse function of f(µ,�) with respect to µ,
when we hold � fixed to the value �.

Step III (Post-processing via plug-in):

From bµnaive in Step I, and b� in Step II, compute bµascifit :=

(bµ1, . . . , bµn)
> as follows:

bµi := f
�1

( bTi _ f(⌘, b�), b�), for each i 2 [n]. (3.18)

3.2.1 Intuition for the three ASCIFIT steps

We now provide more precise intuition for each of the three ASCIFIT steps, i.e.,
Step I – Step III.

Intuition for Step I:

Here, we begin with the pre-processing operation Ti := |Ri|. This serves the
critical dual purpose of removing the effect of the sign-corruptions ⇠i, and also
induces independence of the resulting observations (T1, . . . , Tn)

>. This helps
directly address Challenge I and Challenge II under the ASCI setup. To
better understand this dual effect, note that in the ASCI setup, the ⇠i 2 {�1, 1}
may be arbitrarily chosen by the adversary (without a precise distributional
assumption). However, the critical information in our model is given by pre-
processing each observation, Ri, as Ti := |Ri|. More specifically we have that
Ti = |⇠i (µi + "i)| = |µi + "i|. Since µi + "i

i.n.i.d.⇠ N
�
µi,�

2
�
, per Definition 3.9

we have that Ti

i.n.i.d.⇠ FoldNorm (µi,�), per Definition 3.9. We note that our pre-
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processed observations {T1, . . . Tn} are all i.n.i.d.1, since they have a common
variance �2 but varying means µi for each observation i 2 [n]. Moreover, fitting
an isotonic regression to Ti intuitively estimates f(µi,�) which are the mean
of each Ti. This step is formally justified by the results of Zhang (2002).
Intuition for Step II:

This is motivated by second moment matching to estimate �. Specifically,
using the fact that the expected value of 1

n

P
n

i=1 T
2
i
, is �2 + 1

n

P
n

i=1 µ
2
i
. The

left hand side of Equation (3.17) directly estimates the term �
2
+

1
n

P
n

i=1 µ
2
i
. In

Step II it is not clear a priori whether such an inverse function f
�1

(·,�) exists,
or whether there exists a unique positive solution for � in Equation (3.17). We
will demonstrate that both assertions are true, and that the unique solution b�,
to estimate �, can be computed efficiently with a binary search approach. We
would like to note here that estimating � is not an easy problem (it is not by
coincidence that in classical isotonic regression that � is viewed as a nuisance
parameter). This difficulty explains why we need to impose some additional
assumptions on the vector µ and on � later on. Next, we provide the intuition
on why we use the factor bTi _ f(⌘,�) in Step II, for each i 2 [n]. This is
summarized in Proposition 3.11.

Proposition 3.11 (Reason for the “_f(⌘,�)”-correction in Step II). The need
for defining the _f(⌘,�) in Equation (3.17) in Step II in ASCIFIT, is that the
solution to the problem

argmin

eT1,...,eTn

nX

i=1

(Ti � eTi)
2 s.t. f(⌘,�)  eT1  . . .  eTn, (3.19)

is related to the solution to

argmin

bT1,...,bTn

nX

i=1

(Ti � bTi)
2 s.t. bT1  . . .  bTn, (3.20)

as eTi :=
bTi _ f(⌘,�).

To understand the significance of Proposition 3.11, first note that we apply
the PAVA to the Ti values in Step I. As such, the corresponding least squares
PAVA estimates, bTi, actually project onto the unconstrained monotone cone,
as per Equation (3.20). However, in our setup we actually want to solve the
constrained non-negative monotone means, as per Equation (3.19). Fortunately,
this is not an issue since we can simply post hoc correct each of the fitted

1i.e., independent but not identically distributed.
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unconstrained PAVA solutions as eTi := bTi _ f(⌘,�), for each i 2 [n]. This
follows by adapting Németh and Németh (2012, Corollary 1) to our ASCIFIT
setup. From all of the above discussion, intuitively it follows that the term
�
2
+

1
n

P
n

i=1(f
�1

( bTi _ f(⌘,�),�))
2 in (3.17) also estimates �2 + 1

n

P
n

i=1 µ
2
i
,

which explains why in Step II we equate that term to 1
n

P
n

i=1 T
2
i
.

Intuition for Step III:
To understand the need for this step, one needs to realize that the PAVA

will estimate the means of Ti which are f(µi,�). Hence in order for us to go
back at the original µi scale, we need to invert the value of the PAVA estimates
bTi. Ideally we would use the true value of � in the inversion, but since it is
unavailable to us, we use the plug-in estimate b� as computed in Step II. In
addition the term “_f(⌘, b�)” in Equation (3.18) is present, since by assumption
the value of each µi (or sufficiently just µ1) must be at least ⌘, after inverting.

3.3 Analysis of ASCIFIT: Upper bounds

We have now described the details and key intuition behind our three-step
ASCIFIT estimator bµascifit, for µ. We now turn our attention to formalizing this
intuition into least squares estimation risk bounds. More specifically, our end
goal in this section is to describe our high probability non-asymptotic upper
risk bound for bµascifit, and understand its dependence on the sample complexity,
and other ASCI parameters. We also provide summary sketch behind the main
proof techniques used and what insight they offer for estimation purposes.
Before we state the results we will define the rate of convergence rn,2(µn, µ1,�),
which plays an important role in all of the Theorems to follow. For an absolute
constant C2 > 0 define

rn,2(µn, µ1,�) := min


2�

2
C

2
2 ,

27

4

✓
µn � µ1

n

◆ 2
3

(�C2)
4
3 +

2�
2
C

2
2

n
(1 + log n)

�
.

(3.21)

Importantly, assuming that µn � µ1,� are constants not scaling with the

sample size n, we have that rn,2(µn, µ1,�) . max
�⇣

�
2
V

n

⌘ 2
3
,
�
2 logn
n

}, where
V := µn � µ1, is the total variation of the underlying monotone signal. With
this essential background, we are ready to state our first result in Theorem 3.12.

Theorem 3.12 (Equation (3.17) has a unique root). Assume that there exist
constants  , , C > 0 such that   �   and 1

n

P
n

i=1 µ
2
i
 C, for each

n 2 N. In addition let rn,2(µn, µ1,�) = o(1), where the quantity rn,2(µn, µ1,�)
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is defined in (3.21). Then for sufficiently large n, � = o

⇣
(rn,2(µn, µ1,�))

�1
⌘
,

and � = o
�
n
1/2

�
, under the ASCI setup, Equation (3.17) in ASCIFIT has a

unique root �⇤ 2
h
0,

q
1
n

P
n

i=1 T
2
i

i
for � with probability at least 1���1�2�

�2.

The key insight of Theorem 3.12 from a statistical perspective, is that our
second moment matching approach in Step II will ensure that our proposed
estimator b�, for �, will be unique with high probability. The core idea behind
the proof of Theorem 3.12 is that the map � 7! G(�) := �

2
+

1
n

P
n

i=1(f
�1

( bTi _
f(⌘,�),�))

2 is monotone increasing over � � 0. This enables the use of the
intermediate value theorem to check that two endpoints of G(�)� 1

n

P
n

i=1 T
2
i
,

evaluated at � 2 {0,
q

1
n

P
n

i=1 T
2
i
} have opposite sign with high probability.

This has important practical implications for estimation purposes. In effect, it
means that we can efficiently compute b�, by solving G(�) =

1
n

P
n

i=1 T
2
i

(per
Equation (3.17)) using a binary search approach between the two identified
endpoints. We would like to mention that while using the intermediate value
theorem sounds like an easy task, it turns out that it is extremely hard to
verify that G(0)  1

n

P
n

i=1 T
2
i
, for which the bulk of the proof of Theorem 3.12

is dedicated to.
Although Theorem 3.12 gives us a high probability bound on estimating

b� uniquely, it is important to next understand how efficiently b� estimates �.
This is summarized in Theorem 3.13.

Theorem 3.13 (b� is close to �). Under the assumptions of Theorem 3.12,
we have that |� � b�| . (�rn,2(µn, µ1,�))

1/2
+ �n

�1/2 with probability at least
1� ��1 � 2�

�2, where ��1
, �

�2 2 (0, 1).

From Theorem 3.13 we see that b� converges to � roughly at a n
�1/3 rate. In

both Theorems 3.12 and 3.13, we require that there exist constants  , , C > 0

such that   �   and 1
n

P
n

i=1 µ
2
i
 C, for each n 2 N. For transparency, we

note that such assumptions are an artefact of our methodology and ensure that
our risk bounds can be tightly controlled using the second moment matching
approach. Given the highly adversarial corruptions and non-convex constraints
that can arise under ASCI estimation, e.g., in Example 3.7, these are slightly
stronger assumptions required for classical convex isotonic regression setup.
They effectively represent a trade-off for the flexibility, and simplicity of using
ASCIFIT under these adversarial settings, whilst still ensuring precise control
in the parameter estimation risk bounds.

b� in our post-processing correction for bµascifit := (bµ1, . . . , bµn)
>. That is,

our final estimate for each µi, is given by bµi := f
�1

( bTi _ f(⌘, b�), b�). With
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this explicit form and our tightly controlled bounds in Theorem 3.12 and
Equation (3.17) we are finally able derive the required least squares risk rate
of bµascifit. This is summarized in Theorem 3.14. We will shortly discuss this
result further in Section 3.4 when we derive high probability minimax lower
bounds.

Theorem 3.14 (bµascifit is close to µ). Under the assumptions of Theorem 3.12
and Theorem 3.13, we have that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� µi)
2 . �rn,2(µn, µ1,�) + �

2
n
�1

, (3.22)

with probability at least 1� ��1 � 2�
�2.

Remark 3.15. We note that ⌘ is currently absorbed in our constants in Theo-
rems 3.12 to 3.14. The exact form is complicated (but the smaller the ⌘ the
bigger the constants). For more details, please refer to Section 3.D.

3.4 Lower bounds

We now derive high probability minimax lower bounds under the ASCI setting.
We accordingly first introduce the relevant related notation and definitions here
for classes of monotonic sequences. We denote S" :=

�
µ := (µ1, . . . , µn)

> ��µ1  . . .  µn

 

to be the set of all non-decreasing sequences. We define k(µ) � 1, for µ 2 S",
to be the integer such that k(µ) � 1 is the number of inequalities µi  µi+1

that are strict for i 2 [n � 1] (i.e., the number of ‘jumps’ of µ). The class
of bounded monotone functions are S"

(V
⇤
) :=

�
µ 2 S" ��V (µ)  V

⇤ , for
some fixed V

⇤ � 0, and V (µ) := µn � µ1, is the total variation of any
µ 2 S". We focus on the ASCI-restricted class of monotone sequences, i.e.,
S"

(V
⇤
, ⌘, C) :=

�
µ 2 S"

(V
⇤
)
�� 1
n

P
n

i=1 µ
2
i
 C, µ1 > ⌘ > 0

 
.

We closely follow the approach of Bellec and Tsybakov (2015, Proposition 4)
but non-trivially adapt it to our ASCI setting by ensuring the monotonic-
ity constraint in Equation (3.5) is satisfied in the lower bound construction.
The proof uses well established techniques including the Varshamov-Gilbert
bound Tsybakov (2009, Lemma 2.9), and Fano’s Lemma arguments using
Tsybakov (2009, Theorem 2.7). This leads to our minimax lower bound result
in Proposition 3.16.

Proposition 3.16 (Minimax lower bounds). Let n � 2, V
⇤
> 0 and � > 0, and

define ern,2(V ⇤
,�) := max

�⇣
�
2
V

⇤

n

⌘ 2
3
,
�
2

n
}. Then, there exist absolute constants
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c, c
0
> 0 such that:

inf
bµ

sup

S"(V ⇤
, ⌘, C)

Pµ

✓
1

n
kbµ� µk2 � cern,2(V ⇤

,�)

◆
> c

0 (3.23)

Crucially, Proposition 3.16 demonstrates that our high probability upper
bounds for ASCIFIT in Theorem 3.14 are sharp in the minimax sense, up to
constants and log factors. This is evident by directly comparing ern,2(V ⇤

,�) to
rn,2(µn, µ1,�) per Equation (3.21).

3.5 Simulations

We now demonstrate our ASCIFIT estimation algorithm in action through
a variety of simulations2. Specifically, for simulation purposes we consider
n observations, {Ri | i 2 [n]}, where each observation Ri is generated from
Example 3.5. For sufficiently large n, the ASCI model in Example 3.5 roughly
translates to (1 � p)-proportion of observations being independently sign-
corrupted by the adversary. Moreover we assume per Equation (3.11) that the
adversarial sign-corruptions, ⇠i, are chosen independently of all true errors, "i,
for each i 2 [n]. The true monotone signal is defined to be µi := ⌘+(1� ⌘) i�1

n
,

for each i 2 [n]. We run this generating process over the following parameter
grid: ⌘ := 0.2, p := 0.5, � 2 {0.5, 1, 1.5, 2}, n 2 {100, 250, 500, 1000}. We
perform 50 replications for each combination of simulation grid parameters. In
each replication of this generating process we fit the ASCIFIT estimator bµascifit,
for µ. The main summary result from running our simulation, is shown in
Figure 3.5.1.

To clarify, given ⌘ = 0.2, p = 0.5, Figure 3.5.1 plots the sample mean-
MSE, 1

n
kbµascifit � µk2, over 50 ASCIFIT replications for each value of n 2

{100, 250, 500, 1000}. Here the sample mean-MSE is a useful simulation proxy
for the least squares error, our core theoretical risk measure of interest. This
sample mean-MSE is plotted separately for each of the four sigma values,
� 2 {0.5, 1, 1.5, 2}. The mean-MSE value of each replication (± 2 standard
errors) are shown using error bars in an effort to quantify replication uncertainty.
The plot in Figure 3.5.1 is as expected in that all of the sample mean-MSE
values show a steady decreasing trend in n. Importantly the relative uncertainty
in sample mean-MSE reduces in n, as seen by the smaller error bars to the right

2Reproducible code for all figures in this paper is found at: https://github.com/
shamindras/ascifit. All of the simulation results in this section were run on a personal
Macbook laptop with macOS, Intel Core i9 CPU, and 64GB RAM. The total runtime for a
single run of all simulations is approximately 90 minutes.
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Figure 3.5.1: Mean (sample) MSE for estimating µ via ASCIFIT as a function of n,�.

of Figure 3.5.1. For smaller � values, i.e., smaller variance in the underlying
generating model, we see a much lower sample mean-MSE on average compared
to higher �-valued simulations. That is, our ASCIFIT estimator achieves better
accuracy, with smaller underlying variability in the model, on average when
other factors are held constant.

Finally, in order to precisely gauge how well the ASCIFIT estimator bµascifit,
actually fits the true signal µ, it is instructive to plot both directly on the
original generating sample data. This is seen for one instance over our parameter
grid of simulations in Figure 3.5.2.

Specifically, for ⌘ = 0.2, p = 0.5, n = 1000,� = 1.5, Figure 3.5.2 plots the
simulated true generating process, µ, against the ASCIFIT estimator, bµascifit.
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Figure 3.5.2: Example of bµascifit vs. µ for ⌘ = 0.2, p = 0.5, n = 1000,� = 1.5.

Additionally both the original and sign-corrupted individual observations are
plotted to emphasize the difficulty of this estimation task. Moreover, for com-
parison purposes we also plot the naive estimator, i.e., bµnaive. Here bµnaive
represents the estimator by stopping at Step I in ASCIFIT. That is, estimating
µ, by simply fitting isotonic regression (using the PAVA) on Ti := |Ri|. Further-
more, since p = 0.5, as expected, on average roughly half of the true responses
are adversarially sign-corrupted. Despite this, one can see that ASCIFIT is
relatively stable and reasonably recovers the true signal. This shows more di-
rectly (in such an instance), the robustness of ASCIFIT under such randomized
adversarial sign-corruptions. Moreover since n = 1000, we can see that ASCIFIT
indeed fits well with increasing sample complexity. In addition it highlights

80



3.6. Conclusion

the importance of Step II and Step III in ASCIFIT.

3.6 Conclusion

In this paper we have considered a variation of the original isotonic regression
problem in which the observations can be adversarially corrupted in their
sign value. In this ASCI setting, adversarially refers to the fact that the sign-
corruptions can be chosen to have strong dependence with the error terms in the
original model. Our simple three-step estimation procedure, ASCIFIT, is easy
to implement with existing software and has sharp non-asymptotic minimax
guarantees on the estimation error, under square loss. For future directions we
note that that true signal is required to be strictly positive for our guarantees
to hold. We believe this restriction can be lifted if one uses unimodal regression
instead of isotonic regression in Step I. However, sharp risk guarantees need to
first be proven similar to Zhang (2002) under this unimodal setting. It would
also be interesting to see if the moment matching technique could be extended
subgaussian error terms. We leave these exciting directions for future work.
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Appendix - Chapter 3

3.A Preliminary

In this appendix we provide detailed proofs of all key statements from the main
paper. Since our work relies a variety of core ideas from isotonic regression we
first introduce some common definitions which will be referred to in subsequent
proofs.

3.A.1 Notation Summary

To ensure that the Appendix is can be read in a standalone manner, we
consolidate key notation used in the paper in Table 3.A.1. Unless stated
otherwise K ✓ Rd is a closed, non-empty convex set, and ⌦ ✓ Rd.

3.A.2 Useful miscellaneous results

Here we prove some useful standard results that are used in several of the
remaining proofs. For reader convenience, we provide short proofs to ensure
that our work is self-contained.

We start with some elementary inequalities, which will be used repeatedly.
First, in Lemma 3.17 we introduce a differencing inequality we use repeatedly
to construct lower bounds.

Lemma 3.17 (Difference of squares lower bound). For each a, b, l 2 R, such
that b, l � 0 and a� b � l, the following holds:

a
2 � b

2 � la � l
2 (3.24)
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3. adversarial sign-corrupted isotonic regression

Table 3.A.1: Notation and conventions used in this chapter

Variables and inequalities

a ^ b min {a, b} for each a, b 2 R
a _ b max {a, b} for each a, b 2 R

scalars x, y, z 2 R
vectors x,y, z 2 Rd

matrices X,Y,Z 2 Rd⇥m

.  up to positive universal constants
& � up to positive universal constants

an = O (1) (9C > 0)(9N 2 N)(8n � N)(|an| < C)

an = O (bn)
an

bn
= O (1)

an = o (1) (8C > 0)(9N 2 N)(8n � N)(|an| < C)

an = o (bn)
an

bn
= o (1)

Xn = oP (1) (8" > 0)(P (|Xn| � ")
n!1���! 0)

Xn = OP (1) (8" > 0)(9C > 0)(9N 2 N)(8n � N)(P (|Xn| � C)  ")

Functions and sets

[n] {1, . . . , n}, for n 2 N
Indicator function I⌦(x) Takes value 1 when x 2 ⌦, and 0 otherwise

⇧K : Rd ! K `2-projection of any x 2 Rd onto K

f : ⌦! R is increasing If 8u, v 2 ⌦ such that u  v =) f(u)  f(v)

f : ⌦! R is decreasing If 8u, v 2 ⌦ such that u  v =) f(u) � f(v)

� : R! [0, 1] Cumulative density function of N (0, 1)

� : R! R Probability density function of N (0, 1)

S" �
µ := (µ1, . . . , µn)

> ��µ1  . . .  µn

 

S"
+

�
µ 2 S" ��µ1 � 0

 

S"
(V

⇤
)

�
µ 2 S" ��V (µ)  V

⇤ 

V (µ) µn � µ1 for µ 2 S"

S"
k⇤

�
µ 2 S" �� k(µ)  k

⇤ 

S"
(V

⇤
, ⌘, C)

�
µ 2 S"

(V
⇤
)
�� 1
n

P
n

i=1 µ
2
i
 C, µ1 > ⌘ > 0
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3.A. Preliminary

Proof of Lemma 3.17. We proceed as follows. First note that since b, l � 0 by
assumption, we have that a� b � l () a � b+ l � 0. Now observe:

a
2 � b

2
= (a+ b)(a� b)

� l(a+ b) (since a� b � l � 0 by assumption.)
� la (since b � 0 by assumption.)
� l

2 (since a � l)

as required.

Lemma 3.18 (Lower bound via difference of squares). For each a, b, C,K 2 R,
such that b � 0, a

2 � b
2 � C > 0, a 2 [0,K], the following holds:

a� b � C

2K
(3.25)

Proof of Lemma 3.18. We proceed as follows. First note that since a
2 � b

2 �
C > 0 by assumption, we have that a > 0, and hence a > b,K > 0 since both
a, b are non-negative. Now observe:

a
2 � b

2 � C (by assumption.)

=) a� b � C

a+ b
(since a > 0, b � 0 =) a+ b > 0.)

� C

2a
(since a � b.)

� C

2K
(since a  K.)

as required.

Lemma 3.19 (Maximum difference square inequality). For each a, b, c 2 R
such that b  c the following inequality holds:

((a _ b)� c)
2  (a� c)

2 (3.26)

Proof of Lemma 3.19. Under the assumption that a, b, c 2 R such that b  c,
let d := a _ b. We then observe:

(d� c)
2  (a� c)

2

() d
2 � a

2  2dc� 2ac (expanding and simplifying.)
() (d+ a)(d� a)  2c(d� a) (3.27)
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3. adversarial sign-corrupted isotonic regression

So we need to equivalently prove that Equation (3.27). To that end we only
need to consider 2 cases. Namely a � b, and a < b. Note that in the first case
a � b =) d := a _ b = a. In this case, both LHS/RHS of Equation (3.27)
are 0, and the statement holds. Next consider the case a < b. Here we have
a < b =) d := a _ b = b > a. We then observe the following:

a+ d = a+ b (since d = b.)
 2b (since a < b by assumption.)
 2c (since b  c by assumption.)

That is, we have that a+ d  2c. Substituting back to Equation (3.27) we
have that (d+ a)(d� a)  2c(d� a), which is what we wanted to show. Which
completes the proof Equation (3.26), as required.

Lemma 3.20 (Square sum inequality). For each a, b 2 R the following holds:

(a+ b)
2  2(a

2
+ b

2
) (3.28)

Proof of Lemma 3.20. We proceed as follows:

(a+ b)
2
= a

2
+ 2ab+ b

2 (3.29)
 a

2
+ b

2
+ 2 |ab| (since x  |x| for each x 2 R)

 a
2
+ b

2
+ 2(|a|2 + |b|2) (by AM-GM we have 2 |ab|  |a|2 + |b|2)

= 2(a
2
+ b

2
) (3.30)

as required.

As a result of Lemma 3.20 we obtain Corollary 3.21.

Corollary 3.21. For random variables X1, X2 the following holds:

V (X1 �X2)  2(V (X1) + V (X1)) (3.31)

Proof of Corollary 3.21. First let the centered versions of the random variables
be denoted as

eXi := Xi � E (Xi) , for each i 2 [2]. (3.32)
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3.A. Preliminary

It then follows that:

V (X1 �X2) = V (X1 �X2 + E (X2)� E (X1)) (3.33)

= V
⇣
eX1 � eX2

⌘
(3.34)

= E
⇣
( eX1 � eX2)

2
⌘

(since eX1,
eX2 are both centered.)

= E
⇣
2( eX2

1 + eX2
2 )

⌘
(using Lemma 3.20)

= 2

⇣
E
⇣
eX2
1

⌘
+ E

⇣
eX2
2

⌘⌘
(linearity of expectation.)

= 2(V (X1) + V (X2)) (since eX1,
eX2 are both centered.)

as required.

The following is a standard result from real analysis, which we use repeatedly.

Lemma 3.22 (B-Lipschitz characterization via bounded derivative). Let f :

I ! R be continuous and once differentiable, where I ✓ R is an interval
(possibly unbounded).

f is B-Lipschitz, with B > 0 () (9B > 0)(8x 2 R) : (
��f 0

(x)
��  B) (3.35)

Proof of Lemma 3.22. We prove both directions. In both parts we assume that
f : I ! R be continuous and once differentiable, where I ✓ R is an interval
(possibly unbounded).
( =) ). Suppose that f is B-Lipschitz, with B > 0. We then have that, for
some fixed (but arbitrary) c 2 I:

|f(x)� f(c)|  B |x� c| (by definition of B-Lipschitz property.)

=)
����
f(x)� f(c)

x� c

����  B (taking limits as x! c.)

=)
��f 0

(c)
��  B

Since c 2 I is arbitrary, indeed |f 0
(x)|  B, for each x 2 I, as required.

((= ). Suppose that |f 0
(x)|  B, with B > 0. Further let x, y 2 I, such that

x < y. Since f is differentiable on I, we have:

|f(x)� f(y)| 
��f 0

(c)
�� |x� y|

(by the mean value theorem, for some c 2 (x, y).)
 B |x� y| (by assumption.)

Which implies that f is B-Lipschitz, as required.
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3. adversarial sign-corrupted isotonic regression

Lemma 3.23 (Standard normal upper bound). Let �(x),�(x) respectively
denote the probability density function, and cumulative density function of a
standard normal variable. Then the following inequality holds:

x�(x)

2�(x)� 1
 1

2
, for each x � 0 (3.36)

With equality if and only if x = 0.

Proof of Lemma 3.23. We first note that at x = 0, that x�(x)
2�(x)�1 is an indeter-

minate form of type 0
0 . As such we have:

lim
x!0

x�(x)

2�(x)� 1
=

limx!0
@

@x
x�(x)

limx!0
@

@x
2�(x)� 1

(using L’Hospital’s rule.)

=
limx!0 �(x) + x�

0
(x)

limx!0 2�(x)

=
limx!0 �(x)

limx!0 2�(x)

=
�(0)

2�(0)
(by continuity of �(x) at x = 0.)

=
1

2
(3.37)

With our given function now defined to be 1
2 at x = 0, we now proceed to prove

our given inequality. Observe that we can equivalently reformulate it as:

�(x)� x�(x)� 1

2
� 0 (3.38)

Setting h(x) := �(x)� x�(x)� 1
2 , we observe that h(0) = �(0)� 1

2 = 0. We
need to show that h(x) � 0, for each x � 0, which will imply the result. We
will show that h(x) is increasing, i.e., or equivalently that h

0
(x) � 0, for each

x � 0. We then have that:

h
0
(x) = �(x)� (�(x) + x�

0
(x))

= �x�0(x)

= �x
✓
�x 1p

2⇡
e
� 1

2x
2

◆
(using �(x) := 1p

2⇡
e
� 1

2x
2 .)

= x
2
�(x)

� 0 (3.39)
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3.A. Preliminary

Note that the inequality in Equation (3.39) is strict when x > 0 and equality
holds if and only if x = 0. This means the function is strictly increasing and
bounded away from 0 when for each x > 0, and equal to 0 only when x = 0, as
required.

3.A.3 The Folded Normal Distribution

For convenience, we begin by quickly recalling the definition of the Folded
Normal distribution.

Definition 3.9 (Folded Normal distribution). Suppose R ⇠ N (µ,�
2
), and

let T := |R|. We then say that T ⇠ FoldNorm(µ,�), is a Folded Normal
distribution. We denote the mean and variance of T , by f(µ,�) and g(µ,�),
respectively. They are given as follows:

f(µ,�) := E (T ) = �

p
2/⇡ exp(�µ2

/(2�
2
))� µ(1� 2�(µ/�)). (3.15)

g(µ,�) := V (T ) = µ
2
+ �

2 � f(µ,�)
2
. (3.16)

Remark 3.24. We note that Equation (3.15) can be equivalently written as
follows:

�

p
2/⇡ exp(�µ2

/(2�
2
)) + µ(1� 2�(�µ/�)) (3.40)

Note that this equivalence follows from the symmetry of the standard normal
CDF, i.e., �(x) = 1 � �(�x) for each x 2 R. For our purposes we typically
use the form of Equation (3.15).

3.A.4 Properties of the folded normal mean: f(µ,�)

Let’s start setting up some notation. First we note as previously Ti := |Ri| =
|µi + "i|. Where we then have Ti ⇠ FoldNorm

�
µi,�

2
�
. Now denote f(µi,�) :=

E (Ti), for each i 2 [n]. Moreover the Ti random variables are all mutually
independent, but not identically distributed (since their mean’s, i.e., f(µi,�)

differ for each i 2 [n]). Since we run PAVA on (T1, . . . , Tn) we have the resulting
estimators ( bT1, . . . ,

bTn). We will also denote the population level error terms for
this transformed (mean centered) response as �i := Ti � f(µi,�). We note that
the (�1, . . . , �n) are all mutually independent, but not identically distributed.

Lemma 3.25 (Properties of the Folded Normal mean). Suppose R ⇠ N (µ,�
2
).

Let T
a.s.
= |R|, then T ⇠ FoldNorm

�
µ,�

2
�

per Definition 3.9. We denote the
mean of the Folded Normal distribution by f(µ,�) := E (T ). Given this setup,
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3. adversarial sign-corrupted isotonic regression

and fixing � > 0, we note the following important properties of f(µ,�):

f(µ,�) � 0 for each µ 2 R (3.41)
f(µ,�) � µ for each µ 2 R (3.42)

f(µ,�) is strictly increasing in µ 2 R>0 (3.43)
@f(µ,�)

@µ
2 (0, 1) is for each µ 2 R>0 (3.44)

f(µ,�) is 1-Lipschitz for each µ 2 R>0 (3.45)
f(µ,�)

2  µ
2
+ �

2 for each µ 2 R�0 (3.46)

Additionally for µ1  . . .  µn we have that the relationship holds for V (f,µ,�),
i.e., the total variation of the mean of the Folded Normal distribution:

V (f,µ,�) :=
n�1X

i=1

|f(µi+1,�)� f(µi,�)|  µn � µ1 (3.47)

Proof of Lemma 3.25. We prove each property (Equations (3.41) to (3.47)) in
turn. As per the assumption � > 0 is fixed and that R ⇠ N

�
µ,�

2
�

for µ 2 R. ⌅

(Proof of Equation (3.41).) We have that T := |R| � 0 a.s. =) f(µ,�) :=

E (T ) = E (|R|) � 0 by the monotonicity of expectation, as required. ⌅

(Proof of Equation (3.42).) We have that R  |R| a.s. =) µ := E (R) 
E (|R|) = E (T ) =: f(µ,�) again by the monotonicity of expectation, as re-
quired. ⌅

(Proof of Equation (3.43).) For any µ > 0 we have that:

f(µ,�) := �

r
2

⇡
exp

✓
� µ

2

2�2

◆
� µ

⇣
1� 2�

⇣
µ

�

⌘⌘

(per Equation (3.15))

=) @f(µ,�)

@µ
= �µ

�

r
2

⇡
exp

✓
� µ

2

2�2

◆
� 1 + 2�

⇣
µ

�

⌘
+

2µ

�
�

⇣
µ

�

⌘

= 2�

⇣
µ

�

⌘
� 1 (since µ

�

q
2
⇡
exp

⇣
� µ

2

2�2

⌘
=

2µ
�
�
�
µ

�

�
)

> 0 (since µ,� > 0 and �
�
µ

�

�
>

1
2)

as required. ⌅
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3.A. Preliminary

(Proof of Equation (3.44).) By the previous proof, we note that @f(µ,�)
@µ

> 0.
Also using the previous proof and noting that �(x) >

1
2 for each x > 0, it

follows that @f(µ,�)
@µ

= �1 + 2�
�
µ

�

�
< 1. Combining both parts we have that

@f(µ,�)
@µ

2 (0, 1), as required. ⌅

(Proof of Equation (3.45).) By the previous proof, we note that @f(µ,�)
@µ

2
(0, 1) =)

���@f(µ,�)
@µ

���  1 for each µ > 0. It follows by the mean value theorem,
that f(µ,�) is 1-Lipschitz as required. ⌅

(Proof of Equation (3.46).) Observe that from Equation (3.16) we have that
g(µ,�) := V (T ) = µ

2
+ �

2 � f(µ,�)
2. Since V (T ) � 0, it follows that

f(µ,�)
2  µ

2
+ �

2 for each µ 2 R, as required. ⌅

(Proof of Equation (3.47).) Let i 2 [n] be arbitrary. Now note that by
the Equation (3.45) property it follows that , we then have that:

V (f,µ,�) :=
n�1X

i=1

|f(µi+1,�)� f(µi,�)| (by definition)

=

n�1X

i=1

f(µi+1,�)� f(µi,�)

(using Equation (3.43) and monotonicity of µ1  . . .  µn)
= f(µn,�)� f(µ1,�) (by telescoping sum)
 |µn � µ1| (using Equation (3.45))
= µn � µ1 (by monotonicity of µ1  . . .  µn)

as required. ⌅

Thus all properties specified in Equations (3.41) to (3.47) are now proved.

3.A.5 Properties of the folded normal variance: g(µ,�)

Lemma 3.26 (Properties of the Folded Normal variance). Let T ⇠ FoldNorm
�
µ,�

2
�

per Definition 3.9, and let g(µ,�) := V (T ). Given this setup, and fixing � > 0,
we note the following properties of g(µ,�):

g(µ,�)  �2, for each µ 2 R (3.48)
g(µ,�) � g(0,�), for each µ 2 R>0 (3.49)
V
�
T
2
�
= 4µ

2
�
2
+ 2�

4, for each µ 2 R (3.50)
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Proof of Lemma 3.26. We prove each properties specified in Equations (3.48)
to (3.50) in turn.

(Proof of Equation (3.48).) We have for each µ � 0

g(µ,�) := µ
2
+ �

2 � f(µ,�)
2 (per Equation (3.16))

 �2 (since f(µ,�)
2 � µ

2 using Equation (3.42))

as required. ⌅

(Proof of Equation (3.49).) First note that g(0,�) = �
2�f(0,�)2 = �

2�
�
2
⇡

�
�
2.

It then follows that:

g(µ,�) � g(0,�)

() µ
2
+ �

2 � f(µ,�)
2 � �2 �

✓
2

⇡

◆
�
2

() µ
2
+

✓
2

⇡

◆
�
2 � f(µ,�)

2 (3.51)

We will then prove the equivalent statement Equation (3.51). Since µ,� > 0

in our case, let ⌫ :=
µ

�
> 0 in what follows. Then dividing both sides of

Equation (3.51) by ⌫ we obtain:
r
⌫2 +

2

⇡
� ⌫(2�(⌫)� 1) +

r
2

⇡
e
� ⌫

2

2

Let us then define

g(⌫) :=

r
⌫2 +

2

⇡
� ⌫(2�(⌫)� 1)�

r
2

⇡
e
� ⌫

2

2 (3.52)

Taking the derivative of g(⌫) with respect to ⌫ we obtain:

g
0
(⌫) =

⌫q
⌫2 +

2
⇡

� 2�(⌫) + 1� 2⌫p
2⇡

e
� ⌫

2

2 + ⌫

r
2

⇡
e
� ⌫

2

2 (3.53)

=
⌫q

⌫2 +
2
⇡

� 2�(⌫) + 1 (3.54)
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As such all global and local extrema are obtained by setting g
0
(⌫) = 0, that is:

g
0
(⌫) = 0 (3.55)

() ⌫q
⌫2 +

2
⇡

= 2�(⌫)� 1 (3.56)

Now, ⌫ = 0 is a clear solution, at which our function is exactly equal to 0.
Also, we need to look at ⌫ =1, where we also have an identity. So we need
to take care of other possible roots to the equation ⌫q

⌫2+ 2
⇡

= 2�(⌫)� 1. Now

observe that since when ⌫ � 0 the function �(⌫) is concave and therefore
2�(⌫)� 1 = 2(�(⌫)��(0))  2⌫�(0) =

q
2
⇡
⌫. Thus for any non-zero solution

⌫̄ to the equation ⌫q
⌫2+ 2

⇡

= 2�(⌫)� 1, we must have ⌫̄q
⌫̄2+ 2

⇡

 ⌫̄
q

2
⇡

.

This implies that ⌫̄2 � ⇡

2 �
2
⇡
. Now, going back to the original function we

need to show
r
⌫̄2 +

2

⇡
� ⌫̄(2�(⌫̄)� 1) +

r
2

⇡
e
�⌫̄2/2

=
⌫̄
2

q
⌫̄2 +

2
⇡

+

r
2

⇡
e
�⌫̄2/2

.

The latter is equivalent to ⌫̄2+ 2
⇡
� ⌫̄2+

q
2
⇡
e
�⌫̄2/2

q
⌫̄2 +

2
⇡

which is equivalent

to 2
⇡
e
⌫̄
2 � ⌫̄2 + 2

⇡
. since the function ⌫ 7! 2

⇡
e
⌫
2 � ⌫2 is increasing for positive

⌫ it suffices to check that 2
⇡
e
⌫̄
2 � ⌫̄

2
+

2
⇡

for ⌫̄ =
⇡

2 �
2
⇡

(since as we know
from before ⌫̄ is at least that value). This is true, and completes the proof, as
required. ⌅

(Proof of Equation (3.50).) By direct calculation we have:

V
�
T
2
�
= E

�
T
4
�
�
�
E
�
T
2
��2

= E
�
R

4
�
�
�
E
�
R

2
��2 (since T

a.s.
= |R|)

= (µ
4
+ 6µ

2
�
2
+ 3�

4
)� (µ

2
+ �

2
)
2 (2nd

, 4
th moments of N (µ,�

2
))

= 4µ
2
�
2
+ 2�

4

as required. ⌅

Thus all properties specified in Equations (3.48) to (3.50) are now proved.
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3.A.6 Properties of the inverse folded normal mean: f�1(µ,�)

Lemma 3.27 (Properties of the Folded Normal mean inverse). Suppose R ⇠
N (µ,�

2
). Let T

a.s.
= |R|, then T ⇠ FoldNorm

�
µ,�

2
�

per Definition 3.9. We
denote the mean of the Folded Normal distribution by f(µ,�) := E (T ). Given
this setup, and fixing � > 0, we note the following important properties of
f
�1

(u,�) (which denotes the inverse with respect to µ function of f(µ,�) when
� is held fixed):

f
�1

(u,�) exists,

(3.57)

@

@�
f
�1

(u,�) = �
p

2/⇡ exp(�µ2
/(2�

2
))

2�(µ/�)� 1
,

(3.58)
@

@u
f
�1

(u,�) = 1/(2�(µ/�)� 1),
(3.59)

f
�1

(u,�) is a Lipschitz function for each u > f(⌘,�) > 0 for a fixed �,
(3.60)

where in the above u = f(µ,�) (or in other words µ = f
�1

(u,�)).

Proof of Lemma 3.27. We prove each properties specified in Equations (3.57)
to (3.60) in turn.

(Proof of Equation (3.57).) Note that for a fixed � > 0 the function f(µ,�) is
invertible (as it is increasing, per Lemma 3.25), as required. ⌅

(Proof of Equation (3.58).) In order to find the derivative of @

@�
f
�1

(·,�),
we can parametrize as follows:

u = f(µ,�) (3.61)
v = � (3.62)

We will use the inverse function theorem which says that under certain con-
ditions µ = F (u, v) = F (u,�) and � = G(u, v) = v, for some functions F

and G. Note that for a fixed � > 0 the function f(µ,�) is invertible (per
Equation (3.57)). Thus

@

@�
f
�1

(u,�) =
@µ

@�
=
@F (u, v)

@v
= �

@u

@�

J
= �

p
2/⇡ exp(�µ2

/(2�
2
))

J
(3.63)
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Where J is the Jacobian of the transformation

J =

����
@u

@µ

@u

@�

@v

@µ

@v

@�

����

= 2�(µ/�)� 1

> 0 (since µ � ⌘ > 0)

It follows that

@

@�
f
�1

(u,�) = �
p
2/⇡ exp(�µ2

/(2�
2
))

2�(µ/�)� 1
(3.64)

As required. ⌅

(Proof of Equation (3.59).) We similarly evaluate the derivative @

@u
f
�1

(u,�) as
follows:

@

@u
f
�1

(u,�) =
@

@u
µ (3.65)

=

@v

@�

J
(3.66)

=
1

2�(µ/�)� 1
(3.67)

As required. ⌅

(Proof of Equation (3.60).) We note that Equation (3.59) implies that

@

@u
f
�1

(u,�)  1

2�(⌘/�)� 1
(3.68)

since µ � ⌘ > 0 under our setting. In this case, this holds for each u >

f(⌘,�) > 0, for a fixed �. Since this derivative is bounded by this constant, it
follows that f

�1
(u,�) is 1

2�(⌘/�)�1 -Lipschitz by applying Lemma 3.22. ⌅

Thus all properties specified in Equations (3.57) to (3.60) are now proved.

3.A.7 Properties of: J(�)

Definition 3.28 (J(�)). Let ⌘ > 0 be fixed, and � � 0 per Equations (3.4)
and (3.5), respectively. We define the function, J : R�0 ! R, as:

J(�) :=

(
0 if � = 0

�

⇣
1
2 �

⌘/��(⌘/�)
2�(⌘/�)�1

⌘
otherwise

(3.69)
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In order to prove the key properties of J(�), we will first need to prove a useful
result in Lemma 3.29.

Lemma 3.29. We define the function, M : R�0 ! R�0, as:

M(x) :=

(
1
2 if x = 0

x�(x)
2�(x)�1 otherwise.

(3.70)

Note that M(0) =
1
2 , by Equation (3.37). Then M(x) is strictly decreasing for

each x > 0.

Proof of Lemma 3.29. In order to show that M(x) is decreasing for each x > 0,
we will show that M

0
(x) < 0 for each x > 0. To see this, first observe that:

M
0
(x) =

(2�(x)� 1) (�(x) + x�
0
(x))� 2x�

2
(x)

(2�(x)� 1)2

=
(2�(x)� 1)

�
�(x)� x

2
�(x)

�
� 2x�

2
(x)

(2�(x)� 1)2
(since �0(x) + x�(x) = 0)

=
�(x)

(2�(x)� 1)2

�
(2�(x)� 1)

�
1� x

2
�
� 2x�(x)

�

=
�(x)

(2�(x)� 1)2

✓
2

✓
�(x)� 1

2

◆�
1� x

2
�
� 2x�(x)

◆
. (3.71)

Now we see that:

2

✓
�(x)� 1

2

◆
= 2 (�(x)� �(0)) = 2

Z
x

0

1p
2⇡

e
� t

2

2 dt =
2p
2⇡

Z
x

0
e
� t

2

2 dt  2xp
2⇡

,

(3.72)
where the last inequality in Equation (3.72) followed from the fact that e�

t
2

2  1

for each t � 0. It then follows that:
✓
2

✓
�(x)� 1

2

◆�
1� x

2
�
� 2x�(x)

◆
=

✓
2p
2⇡

Z
x

0
e
� t

2

2 dt

◆�
1� x

2
�
� 2xp

2⇡
e
�x

2

2

 2xp
2⇡

�
1� x

2
�
� 2xp

2⇡
e
�x

2

2

(using Equation (3.72))
< 0, (3.73)

Where Equation (3.73) followed by observing that since 1�x
2
< 1� x

2

2 < e
�x

2

2

for each x > 0. Now since �(x)
(2�(x)�1)2 > 0 for each x > 0, we have by applying

Equation (3.73) to Equation (3.72) that M
0
(x) < 0, for each x > 0, as

required.

96



3.A. Preliminary

Lemma 3.30 (Properties of J(�)). Let J(�) be defined as per Equation (3.69).
Then J(�) satisfies the following properties:

J(�) > 0 for each � 2 R>0 and 0 if and only if � = 0 (3.74)
J(�) is continuous for each � 2 R>0 (3.75)

For any 0 < �1 < �2, min
�2[�1,�2]

J(�) � �1
✓
1

2
� ⌘/�2�(⌘/�2)

2�(⌘/�2)� 1

◆
> 0 (3.76)

Proof of Lemma 3.30. We prove each property (Equations (3.74) to (3.76)) in
turn. Throughout these proofs, we write:

J(�) := J1(�)J2(�), where J1(�) := �, and J2(�) :=
1

2
� ⌘/��(⌘/�)

2�(⌘/�)� 1
(3.77)

(Proof of Equation (3.74).) Observe that both J1(�), J2(�) are zero if and only
if � = 0. In the case of J2(�) this follows from Lemma 3.23. Now for � > 0,
J1(�) := � > 0, by assumption. And the fact that J2(�) > 0, for � > 0 again
follows directly from Lemma 3.23. As such, J(�) > 0 for each � > 0, since it
is the product of two strictly positive functions over this support, as required. ⌅

(Proof of Equation (3.75).) J1(�) is continuous for � > 0. Moreover since
�(x),�(x) for a standard normal are continuous over their support, R, it
follows that J2(�) is also continuous for � > 0. As such, J(�) is continuous
for each � > 0, since it is the product of two continuous functions, as required. ⌅

(Proof of Equation (3.76).) Note that for any two fixed �1,�2, such that
0 < �1 < �2, the interval [�1,�2] is compact. From Equation (3.75), we
know that J(�) is continuous for � > 0, and so it attains it’s minimum (and
maximum) on this interval. Moreover, from Equation (3.74), it follows that
min�2[�1,�2] J(�) > 0. Now we note that � 7! J1(�) := �, is increasing in �.
Moreover for each � > 0, we have that J2(�) :=

1
2 �M(

⌘

�
), where the function

M is as defined in Equation (3.70). Moreover it follows from Lemma 3.29 that
J2(�) is strictly decreasing for each � > 0. By the non-negativity of J(�) over
it’s domain, we have that J(�) > J1(�1)J2(�2) for each � 2 [�1,�2]. From this
we have that min�2[�1,�2] J(�) � J1(�1)J2(�2) = �1

⇣
1
2 �

⌘/�2�(⌘/�2)
2�(⌘/�2)�1

⌘
> 0, as

required. ⌅

Thus all properties specified in Equations (3.74) to (3.76) are now proved.
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3.A.8 Properties of: G(�)

Definition 3.31 (G(�)). Under the setup of ASCI generating process per
Definition 3.2, and per the ASCIFIT model we define the function, G : R�0 ! R,
as:

G(�) := �
2
+

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�))
2 (3.78)

Lemma 3.32 (Properties of G(�)). Under the setup of ASCI generating process
per Definition 3.2, and with G(�) defined as per Definition 3.31, we note the
following important properties of G(�):

@

@�
G(�) =

4

n

nX

i=1

�

 
1

2
� f

�1
( bTi,�)/��(f

�1
( bTi,�)/�) ( bTi � f(⌘,�))

2�(f�1( bTi,�)/�)� 1

!
,

(3.79)
G(�) is increasing for � � 0, and strictly increasing for � > 0.

(3.80)

Proof of Lemma 3.32. We prove each property (Equations (3.79) and (3.80))
in turn. Throughout these proofs, J(�) is as defined in Definition 3.28, and
G(�) is as defined in Definition 3.31.

(Proof of Equation (3.79).). Using the definition, we have:

@

@�
G(�)

= 2� � 2

n

nX

i=1

p
2/⇡ f

�1
( bTi,�) exp(�f�1

( bTi,�)
2
/(2�

2
)) ( bTi � f(⌘,�))

2�(f�1( bTi,�)/�)� 1

(using Equation (3.58))

= 2� � 4�

n

nX

i=1

f
�1

( bTi,�)/��(f
�1

( bTi,�)/�) ( bTi � f(⌘,�))

2�(f�1( bTi,�)/�)� 1

(3.81)

=
4

n

nX

i=1

�

 
1

2
� f

�1
( bTi,�)/��(f

�1
( bTi,�)/�) ( bTi � f(⌘,�))

2�(f�1( bTi,�)/�)� 1

!

as required. ⌅

(Proof of Equation (3.80).). Now per Lemma 3.23, we have that x 7! x�(x)/(2�(x)�
1)  1/2 for all x � 0, and moreover it is decreasing for x > 0. Therefore the
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derivative, @

@�
G(�), is bounded from below by 0. As such G(�) is increasing

in �, for � � 0. In fact, since ⌘,� > 0, it follows that ⌘

�
> 0. In turn, we

have that @

@�
G(�) is bounded from below by J(�) := �

⇣
1
2 �

⌘/��(⌘/�)
2�(⌘/�)�1

⌘
> 0,

for each � > 0, using Lemma 3.30. It follows that G(�) is strictly increasing in
�, for � > 0, as required. ⌅

Thus all properties specified in Equations (3.79) and (3.80) are now proved.
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3.B Proofs of Section 3.1

3.B.1 Mathematical Preliminaries

Lemma 3.33 (Symmetrization with Rademacher random variables). Suppose
that " is a symmetric distribution i.e. " d

= �", ⇠ ⇠ Rademacher(↵), with
↵ 2 [0, 1]. If ⇠ ?? " then ⇠"

d
= ".

Proof of Lemma 3.33. Let us define Q := ⇠". We then have the following:

P (Q � q) := P (⇠" � q) (since Q := ⇠".)
= P (⇠" � q | ⇠ = �1)P (⇠ = �1) + P (⇠" � q | ⇠ = 1)P (⇠ = 1)

(since ⇠ ⇠ Rademacher(↵).)
= P (�" � q) (1� ↵) + P (" � q) (↵) (since ⇠ ?? ".)

= P (" � q) (1� ↵) + P (" � q) (↵) (since " d
= �".)

= P (" � q) (1� ↵+ ↵)

= P (" � q)

So we have that Q := ⇠"
d
= ", as required.

The setting can be simplified if the adversary chooses the sign-corruptions
independent of the error terms. To see this, first note that "i are centered
(i.e. symmetric) Gaussian random variables. Now, if the (⇠1, . . . , ⇠n) are picked
independently from ("1, . . . , "n), the ASCI generating process response reduces
to Ri = ⇠iµi + "i. That is our setting encompasses this more simplified setting,
and is shown formally in Corollary 3.34. Further, we note that in the case
where ⇠i

a.s.
= 1 then and µ1  µ2  . . .  µn, then this is equivalent to the

standard univariate isotonic regression setup.

Corollary 3.34. In the case where ⇠i ?? "i, for each i 2 [n] we have that the
ASCI generating process simplifies to Ri = ⇠iµi + "i.

Proof of Corollary 3.34. We note that the underlying adversarial generating
process is given by Ri = ⇠i(µi + "i) = ⇠iµi + ⇠i"i, for each i 2 [n]. Now since
⇠i ?? "i we have by applying Lemma 3.33 for each i 2 [n] that ⇠i"i

i.i.d.⇠ "i.
And so the required adversarial model can be written as Ri = ⇠iµi + "i, as
required.
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3.B.2 Important Model Definitions

First, we formally (redefine) the generating model described in Example 3.5.

Definition 3.35 (Two-component Gaussian mixture ASCI special case from
Example 3.5). We consider n observations, {Ri | i 2 [n]}, where each observation
Ri is generated from the following model:

Ri = ⇠iµi + "i (3.82)
s.t. 0 < ⌘  µ1  µ2  . . .  µn (3.83)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.84)

and ⇠i
i.i.d.⇠ Rademacher(p), p 2 (0, 1), and ⇠i ?? "i (3.85)

Second, we formally define the generating model described in Example 3.7.

Definition 3.36 (Non-convex generating model from Example 3.7). We con-
sider n observations, {Ri | i 2 [n]}, where each observation Ri is generated from
the following model:

Ri = �i + "i (3.86)
s.t. 0 < ⌘  |�1|  |�2|  . . .  |�n| (3.87)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.88)

Remark 3.37. From a simulation perspective, each �i is generated first subject
to Equation (3.87), then ⇠i is sampled independently, and both are added to
give each response Ri.

Third, we introduce an alternative model as per Definition 3.38.

Definition 3.38 (Alternative non-convex model).

Ri = ⇠iai + "i (3.89)
s.t. 0 < ⌘  a1  a2  . . .  an (3.90)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.91)
and ⇠i = sgn (�i) (3.92)
and ⇠i ?? "i (3.93)
and ai = |�i| (3.94)

Finally, for convenience we recall Definition 3.2 as follows.

101



3. adversarial sign-corrupted isotonic regression

Definition 3.2 (Adversarial sign-corrupted isotonic (ASCI) regression). We
consider n observations, {Ri | i 2 [n]}, where each observation Ri is generated
from the following model:

Ri = ⇠i(µi + "i) (3.4)
s.t. 0 < ⌘  µ1  µ2  . . .  µn (3.5)

and "i
i.i.d.⇠ N

�
0,�

2
�

(3.6)
and ⇠i 2 {�1, 1} (3.7)

3.B.3 Formal justification for Example 3.5

Proposition 3.39 (Justification for Example 3.5). Under the model generating
process described in Example 3.5 (i.e., per Definition 3.35), the following model
definition inclusion holds.

Definition 3.35 ✓ Definition 3.2 (3.95)

Remark 3.40. Here, each definitional inclusion is to be read as the former
generating model definition being a special case of the latter generating model
definition.

Proof of Example 3.5. Our basic strategy is to show each model inclusion in
turn.

(Definition 3.35 ✓ Definition 3.2). Observe that Equations (3.83) and (3.84) are
definitionally equivalent to Equations (3.5) and (3.6), respectively. Moreover
we have that Equation (3.85) is a special case of Equation (3.7). Finally, from
Equation (3.85) we have that ⇠i

i.i.d.⇠ Rademacher(p), p 2 (0, 1), and ⇠i ?? "i.
Thus from Corollary 3.34, it follows that Equation (3.82) is a special case of
Equation (3.82).

In summary we have shown that Equation (3.95) holds, from which it fol-
lows that Example 3.5 (or equivalently Definition 3.35) is a special case of
Definition 3.2, as required.

3.B.4 Formal justification for Example 3.7

We now provide a formal Formal justification that Example 3.7 is a special
case of the generating process described in Definition 3.2.

Lemma 3.41 (Justification for Example 3.7). Under the model generating
process described in Example 3.7, the following model definition inclusion holds.

Definition 3.36 = Definition 3.38 ✓ Definition 3.2 (3.96)
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Remark 3.42. As with Proposition 3.39, each definitional inclusion is to be
read as the former generating model definition being a special case of the latter
generating model definition. In the case of equivalence, we note that that both
inclusions hold between the model definitions.

Proof of Example 3.7. Our basic strategy is to show each model inclusion in
turn.

(Definition 3.36 = Definition 3.38) This follows by construction. Observe
that Equations (3.92) and (3.94) imply that ⇠iai = sgn (�i) |�i| = �i, so that
Equations (3.86) and (3.89) are equivalent. In addition from Equation (3.94),
we have that ai = |�i| and thus Equations (3.87) and (3.90) are equivalent, as
are Equations (3.88) and (3.91). As such the equality is established between
the two generating model definitions.

(Definition 3.38 ✓ Definition 3.2). Observe that by Equations (3.6) and (3.91)
are definitionally equivalent. Observe from Equation (3.92) that ⇠i = sgn (�i) 2
{�1, 1} which is a special case of Equation (3.7). For each observation i 2 [n]

using Equation (3.94) that by setting ai := µi that Equations (3.5) and (3.90)
are equivalent. Finally since ⇠i ?? "i from Equation (3.93), we note that Equa-
tion (3.89) is a special case of Equation (3.4) by applying Corollary 3.34 to the
observation Ri, for each i 2 [n].

In summary we have shown that Equation (3.96) holds, from which it fol-
lows that Definition 3.36 is a special case of Definition 3.2, as required.
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3.C Proofs of Section 3.2

3.C.1 Mathematical Preliminaries

Theorem 3.43 (Projection onto the nonnegative monotone cone). Suppose
that S" ✓ Rn is the monotone cone, that is,

S"
:=

n
µ := (µ1, . . . , µn)

> 2 Rn

���µ1  . . .  µn

o
.

and S"
+ ✓ Rn is the nonnegative monotone cone, that is,

S"
+ :=

n
µ := (µ1, . . . , µn)

> 2 S"
���µ1 � 0

o
.

Then for an arbitrary v 2 Rn it holds that

⇧S"
+
(v) = (⇧S"(v))+ ,

where for any z 2 Rn, z+ 2 Rn stands for the lattice operation defined by
the order induced by the nonnegative orthant in Rn. That is, we define the
operation componentwise as (z+)

i
:= (z)

i
_ 0 for each component index i 2 [n].

Proof of Theorem 3.43. See Németh and Németh (2012, Corollary 1) for details.

Remark 3.44. In effect, Theorem 3.43 basically states that in order to project
onto the nonegative monotone cone, K, one can instead first project onto
the monotone cone, W , first, and then take the non-negative part along each
component. This is useful, since one can leverage algorithms like the PAVA
which already efficiently handle projection onto the unrestricted monotone
cone, W .

3.C.2 Proof of Proposition 3.11

Proposition 3.11 (Reason for the “_f(⌘,�)”-correction in Step II). The need
for defining the _f(⌘,�) in Equation (3.17) in Step II in ASCIFIT, is that the
solution to the problem

argmin

eT1,...,eTn

nX

i=1

(Ti � eTi)
2 s.t. f(⌘,�)  eT1  . . .  eTn, (3.19)

is related to the solution to

argmin

bT1,...,bTn

nX

i=1

(Ti � bTi)
2 s.t. bT1  . . .  bTn, (3.20)

as eTi :=
bTi _ f(⌘,�).
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Proof of Proposition 3.11. This follows along the following lines. First subtract
f(⌘,�) from all eTi to bring the first problem to

argmin

T̄i

nX

i=1

((Ti � f(⌘,�))� T̄i)
2 s.t. 0  T̄1  . . .  T̄n, (3.97)

where T̄i =
eTi � f(⌘,�). Now the solution to the unrestricted problem

argmin

T
⇤
i

nX

i=1

((Ti � f(⌘,�))� T
⇤
i )

2 s.t. T
⇤
1  . . .  T

⇤
n ,

is T
⇤
i
= bTi � f(⌘,�). Next we apply Theorem 3.43, we see that T̄i = T

⇤
i
_ 0, so

that eTi = T̄i+f(⌘,�) = T
⇤
i
_0+f(⌘,�) = (T

⇤
i
+f(⌘,�))_f(⌘,�) = bTi_f(⌘,�)

which is what we wanted to show.
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3.D Proofs of Section 3.3

3.D.1 Mathematical Preliminaries

The key idea to prove this theorem here is to apply (Zhang, 2002, Theo-
rem 2.2(ii)) to our specific setting. To ensure our work is self-contained, we
translate this result into the notation of our paper:

Theorem 3.45 (Theorem 2.2 (ii) (Zhang, 2002)). Let Rn,p(f,µ,�,�p) :=
⇣

1
n

P
n

i=1 E
⇣��� bTi � f(µi,�)

���
p
⌘⌘ 1

p . Let �i := Ti � f(µi,�) be independent, with

E (�i) = 0 and E
⇣
|�i|p_2

⌘
 �p_2p , p � 1 then:

Rn,p(f,µ,�,�p)  2
1
p�pCpmin

2

41, 3
2

(
3

(3� p)+

✓
V (f,µ,�)

n�pCp

◆ p

3

+
1

n

Z
n

0

dx

(x _ 1)
p

2

) 1
p

3

5

(3.98)

where Cp are constants depending on p only in general.

Proof of Theorem 3.45. See Zhang (2002, Theorem 2.2(ii)) for details. Note
that to translate between our notation and theirs respectively, we have Ti ⌘
yi,

bTi ⌘ bfn(ti), f(µi,�) ⌘ f(ti), �i ⌘ "i for each i 2 [n].

Corollary 3.46 (Upper bound for R
2
n,2(f,µ,�,�2)). In our setting, define

X :=
1
n

P
n

i=1

⇣
bTi � f(µi,�)

⌘2
. We then have:

E (X)  min

"
2�

2
C

2
2 ,

27

4

✓
µn � µ1

n

◆ 2
3

(�C2)
4
3 +

2�
2
C

2
2

n
(1 + log n)

#
(3.99)

=: rn,2(µn, µ1,�)

where C2 is a constant.

Proof of Corollary 3.46. Since X :=
1
n

P
n

i=1

⇣
bTi � f(µi,�)

⌘2
, then X = R

2
n,2(f,µ,�,�2)

2,
by definition in the setting of Theorem 3.45, assuming the relevant sufficient con-
ditions are met. We now need to check the sufficient condition for Theorem 3.45.
Here we have, for each i 2 [n], that �i := Ti � f(µi,�). Note that by definition
E (�i) = E (Ti) � f(µi,�) = 0. We observe that (�1, . . . , �n) are independent
since the original responses, i.e. (R1, . . . , Rn) are independent by assumption.
And taking absolute values and centering are measurable transformations which
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preserve their independence. We note that as per Zhang (2002, Theorem 2.2(ii)),
we are required to check the sufficient condition E

⇣
|�i|p_2

⌘
 �

p_2
p . In our

case, with p = 2, this is equivalent to showing that E
�
�
2
i

�
 �22 . Then for each

i 2 [n] we have:

E
⇣
|�i|p_2

⌘
= E

�
�
2
i

�
(since p = 2.)

= V (Ti) (since �i are mean centered Ti values.)
=: g(µi,�) (by definition.)
 �2 (using Equation (3.48))
=: �

2
2 (3.100)

As required, by defining �2 := �. So we meet this sufficient condition. Addi-
tionally observe that

Z
n

0

dx

(x _ 1)
=

Z 1

0

dx

(x _ 1)
+

Z
n

1

dx

(x _ 1)
(by truncation)

=

Z 1

0
dx+

Z
n

1

dx

x

= 1 + log n (3.101)

Now, in our setting note that V (f,µ,�)  µn � µ1 using Equation (3.47), it
follows that:

E (X) := R
2
n,2(f,µ,�,�2) (by definition.)

 min

(
2�

2
2C

2
2 ,

27

4

✓
µn � µ1

n

◆ 2
3

(�2C2)
4
3 +

2�
2
2C

2
2

n

Z
n

0

dx

(x _ 1)

)

(setting p = 2 in Theorem 3.45.)

= min

(
2�

2
2C

2
2 ,

27

4

✓
µn � µ1

n

◆ 2
3

(�2C2)
4
3 +

2�
2
2C

2
2

n
(1 + log n)

)

(using Equation (3.101))

= min

(
2�

2
C

2
2 ,

27

4

✓
µn � µ1

n

◆ 2
3

(�C2)
4
3 +

2�
2
C

2
2

n
(1 + log n)

)

(since �2 := � per Equation (3.100))
=: rn,2(µn, µ1,�) (3.102)

as required.
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Lemma 3.47 (Concentration for mean Folded Normal). In our setting we as-
sume that 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N. Define X :=

1
n

P
n

i=1 (Ti � f(µi,�))
2.

We then have:

|X � E (X)|  2��

r
5�2 + 4C

n
(3.103)

with probability at least 1���2, where E (X) =
1
n

P
n

i=1 g(µi,�) =
1
n

P
n

i=1

�
µ
2
i
+ �

2 � f(µi,�)
2
�
.

Proof of Lemma 3.47. First we determine E (X) as follows:

E (X) := E
 
1

n

nX

i=1

(Ti � f(µi,�))
2

!
(by definition of X)

=
1

n

nX

i=1

E
⇣
(Ti � f(µi,�))

2
⌘

=
1

n

nX

i=1

V (Ti) (by since f(µi,�) := E (Ti).)

=
1

n

nX

i=1

g(µi,�) (by since g(µi,�) := V (Ti).)

=
1

n

nX

i=1

�
µ
2
i + �

2 � f(µi,�)
2
�

(using Equation (3.16))

as required. Next we determine V (X) as follows:

V (X) := V
 
1

n

nX

i=1

(Ti � f(µi,�))
2

!
(by definition of X)

=
1

n2

nX

i=1

V
⇣
(Ti � f(µi,�))

2
⌘

(by the independence of Ti)
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Now note that for each i 2 [n] we have:

V
⇣
(Ti � f(µi,�))

2
⌘
= V

�
T
2
i + f(µi,�)

2 � 2f(µi,�)Ti

�

= V
�
T
2
i � 2f(µi,�)Ti

�
(by translation invariance.)

 2
�
V
�
T
2
i

�
+ V (2f(µi,�)Ti)

�
(using Corollary 3.21)

= 2V
�
T
2
i

�
+ 8f(µi,�)

2V (Ti)

= 2V
�
T
2
i

�
+ 8f(µi,�)

2
g(µi,�) (since g(µi,�) := V (Ti))

 2(4µ
2
i�

2
+ 2�

4
) + 8f(µi,�)

2
�
2

(using Equations (3.48) and (3.50))
= 8µ

2
i�

2
+ 8f(µi,�)

2
�
2
+ 4�

4

 16f(µi,�)
2
�
2
+ 4�

4 (using Equation (3.42))
 16(µ

2
i + �

2
)�

2
+ 4�

4 (using Equation (3.46))
= 16µ

2
i�

2
+ 20�

4 (3.104)

Therefore we have that

V (X) =
1

n2

nX

i=1

V
⇣
(Ti � f(µi,�))

2
⌘

 1

n2

nX

i=1

�
16f(µi,�)

2
�
2
+ 4�

4
�

(using Equation (3.42))

 1

n2

nX

i=1

�
16µ

2
i�

2
+ 20�

4
�

(using Equation (3.104))

 16C�
2
+ 20�

4

n
(assuming 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N.)

From this it follows that:

P (|X � E (X)| � t)  V (X)

t2
, for each t > 0

(using Chebychev’s inequality)

 16C�
2
+ 20�

4

nt2
, for each t > 0 (3.105)

It then follows that by setting the upper bound (RHS) to ��2 2 (0, 1), that

16C�
2
+ 20�

4

nt2
=

1

�2
=) t = ��

r
5�2 + 4C

n
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We then have that |X � E (X)|  2��

q
5�2+4C

n
, with probability at least

1� ��2, as required.

Our end goal is to to show a the following high probability result described in
Theorem 3.48.

Theorem 3.48 (Concentration of fitted Folded Normal).

1

n

nX

i=1

⇣
bTi � f(µi,�)

⌘2
 �rn,2(µn, µ1,�) (3.106)

with probability at least 1� ��1.

Proof of Theorem 3.48. First to simplify notation we let X :=
1
n

P
n

i=1

⇣
bTi � f(µi,�)

⌘2

represent the quantity of interest. Observe that X � 0 a.s. by definition, so
that |X| a.s.= X. Then for any t > 0 we have:

P (X � t)  E (X)

t
(by Markov’s inequality)


R

2
n,2(f(µi,�))

t
(by definition, per Corollary 3.46)

 rn,2(µn, µ1,�)

t
(using Corollary 3.46)

It then follows that by setting the upper bound (RHS) to ��1 2 (0, 1), that

rn,2(µn, µ1,�)

t
=

1

�
=) t = �rn,2(µn, µ1,�)

We then have that |X| a.s.
= X  �rn,2(µn, µ1,�), with probability at least

1� ��1, as required.

Lemma 3.49 (Concentration of 1
n

P
n

i=1 T
2
i
). In our setting, define X :=

1
n

P
n

i=1 T
2
i
. We then have:

|X � E (X)|  2��

r
2�2 + 4C

n
(3.107)

with probability at least 1� ��2, where E (X) =
1
n

P
n

i=1

�
µ
2
i
+ �

2
�
.
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Proof of Lemma 3.49. Let X :=
1
n

P
n

i=1 T
2
i
. First we determine E (X) as

follows:

E (X) := E
 
1

n

nX

i=1

T
2
i

!
(by definition of X)

=
1

n

nX

i=1

E
�
T
2
i

�
(by linearity of expectation.)

=
1

n

nX

i=1

⇣
V (Ti) + (E (Ti))

2
⌘

=
1

n

nX

i=1

�
µ
2
i + �

2 � f(µi,�)
2
+ f(µi,�)

2
�

(using Equations (3.15) and (3.16))

=
1

n

nX

i=1

�
µ
2
i + �

2
�

as required. Next we determine V (X) as follows:

V (X) := V
 
1

n

nX

i=1

T
2
i

!
(by definition of X.)

=
1

n2

nX

i=1

V
�
T
2
i

�
(by the independence of Ti.)

=
1

n2

nX

i=1

�
4µ

2
i�

2
+ 2�

4
�

(using Equation (3.50))

 4C�
2
+ 2�

4

n
(assuming 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N.)

From this it follows that:

P (|X � E (X)| � t)  V (X)

t2
, for each t > 0

(using Chebychev’s inequality)

 4C�
2
+ 2�

4

nt2
, for each t > 0 (3.108)

It then follows that by setting the upper bound (RHS) to ��2 2 (0, 1), that

4C�
2
+ 2�

4

nt2
=

1

�2
=) t = ��

r
2�2 + 4C

n
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We then have that |X � E (X)|  2��

q
2�2+4C

n
, with probability at least

1� ��2, as required.

3.D.2 Proof of Theorem 3.12

Theorem 3.12 (Equation (3.17) has a unique root). Assume that there exist
constants  , , C > 0 such that   �   and 1

n

P
n

i=1 µ
2
i
 C, for each

n 2 N. In addition let rn,2(µn, µ1,�) = o(1), where the quantity rn,2(µn, µ1,�)

is defined in (3.21). Then for sufficiently large n, � = o

⇣
(rn,2(µn, µ1,�))

�1
⌘
,

and � = o
�
n
1/2

�
, under the ASCI setup, Equation (3.17) in ASCIFIT has a

unique root �⇤ 2
h
0,

q
1
n

P
n

i=1 T
2
i

i
for � with probability at least 1���1�2�

�2.

Proof of Theorem 3.12. First, under the ASCIFIT setup, we can rewrite Equa-
tion (3.17) as H(�) = 0, where:

H(�) := G(�)� 1

n

nX

i=1

T
2
i . (3.109)

G(�) := �
2
+

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�))
2 (3.110)

Our goal in this proof is to show that H(�) = 0 has a solution �⇤ 2
h
0,

q
1
n

P
n

i=1 T
2
i

i
,

which occurs with high probability. We note that per Lemma 3.32 that G(�)

is increasing for � � 0 and strictly increasing for � > 0 (per Equation (3.80)).
Moreover to see that the equation H(�) = 0 has a unique root we appeal to the
Intermediate Value Theorem. Specifically we are required to find two values
for �, i.e. {�1,�2}, such that the following conditions hold:

G(�2) �
1

n

nX

i=1

T
2
i (3.111)

G(�1) 
1

n

nX

i=1

T
2
i (3.112)
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By taking �2 :=
q

1
n

P
n

i=1 T
2
i

, we observe that a.s.:

G(�2) =
1

n

nX

i=1

T
2
i +

1

n

nX

i=1

 
f
�1

 
bTi _ f

 
⌘,

1

n

nX

i=1

T
2
i

!
,
1

n

nX

i=1

T
2
i

!!2

| {z }
�0 a.s.

(3.113)

�
nX

i=1

T
2
i (3.114)

So indeed �2 :=

q
1
n

P
n

i=1 T
2
i

satisfies the required condition in Equa-
tion (3.111). We now claim that �1 := 0 will satisfy Equation (3.112). First
observe that:

G(0) =
1

n

nX

i=1

f
�1

( bTi _ f(⌘, 0), 0)
2
=

1

n

nX

i=1

( bTi _ ⌘)2, (3.115)

we then want to show that

1

n

nX

i=1

( bTi _ ⌘)2 
1

n

nX

i=1

T
2
i , (3.116)

holds with high probability, to be specified later.
Furthermore, since bTi _ ⌘ is the solution to an optimization problem we

have that a.s.:

nX

i=1

( bTi _ ⌘ � ⌘)(Ti � ⌘) =
nX

i=1

( bTi _ ⌘ � ⌘)2. (3.117)

We see that Equation (3.117) holds since when you project any vector
v 2 Rn on a monotone cone K ✓ Rn, then ⇧K(v)>v = k⇧K(v)k22 per Bellec
(2018, Equation 1.16). Specifically, in our case we have that K = S"

+ := {µ :=

(µ1, . . . , µn)
> 2 Rn

: 0  µ1  µ2  . . .  µn}, and v := (T1 � ⌘, . . . , Tn � ⌘)>.
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We further observe that Equation (3.117) can be rewritten as follows a.s.:

nX

i=1

( bTi _ ⌘ � ⌘)2 =
nX

i=1

( bTi _ ⌘ � ⌘)(Ti � ⌘)

(Equation (3.117))

()
nX

i=1

( bTi _ ⌘)2 + 2⌘

nX

i=1

( bTi _ ⌘ � ⌘) + ⌘
2
=

nX

i=1

( bTi _ ⌘)Ti � ⌘
nX

i=1

( bTi _ ⌘ � ⌘)

� ⌘
nX

i=1

bTi + ⌘
2

(expanding LHS/RHS.)

()
nX

i=1

( bTi _ ⌘)2 =
nX

i=1

( bTi _ ⌘)Ti � ⌘
 

nX

i=1

Ti �
nX

i=1

bTi _ ⌘
!

(3.118)

()
nX

i=1

( bTi _ ⌘)2 =
nX

i=1

( bTi _ ⌘)Ti � ⌘
 

nX

i=1

bTi �
nX

i=1

bTi _ ⌘
!
,

(3.119)

where to go from Equation (3.118) to Equation (3.119) we used the fact thatP
n

i=1 Ti =
P

n

i=1
bTi. This holds since we know that bTi are the PAVA solutions.

Now we derive the following upper bound a.s.:

1

n

 
nX

i=1

bTi �
nX

i=1

bTi _ ⌘
!

=
1

n

nX

i=1

bTi �
1

n

nX

i=1

f(µi,�) +
1

n

nX

i=1

f(µi,�)�
1

n

nX

i=1

bTi _ ⌘

=
1

n

nX

i=1

⇣
bTi � f(µi,�)

⌘
+

1

n

nX

i=1

⇣
f(µi,�)� bTi _ ⌘

⌘
(3.120)



vuut 1

n

nX

i=1

⇣
bTi � f(µi,�)

⌘2
+

vuut 1

n

nX

i=1

⇣
bTi _ ⌘ � f(µi,�)

⌘2
, (3.121)

where the transition between Equations (3.120) and (3.121) was by applying
the Cauchy-Schwartz inequality to each summand. Note that for each i 2 [n],
we have that f(µi,�) � µi � ⌘ per Equations (3.5) and (3.42). Then using
Lemma 3.19 we have a.s.:
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1

n

nX

i=1

⇣
( bTi _ ⌘)� f(µi,�)

⌘2
 1

n

nX

i=1

( bTi � f(µi,�))
2
. (3.122)

Hence by first using the inequality in Equation (3.122) to upper bound
Equation (3.121), we can in turn upper bound the LHS of Equation (3.119) as
follows a.s.:

1

n

nX

i=1

( bTi _ ⌘)2 
1

n

nX

i=1

( bTi _ ⌘)Ti + 2⌘

vuut 1

n

nX

i=1

( bTi � f(µi,�))
2 . (3.123)

On the other hand we have by Theorem 3.48 that:

1

n

nX

i=1

⇣
bTi � f(µi,�)

⌘2
 �rn,2(µn, µ1,�), (3.124)

with probability at least 1� ��1, for ��1 2 (0, 1). Thus from Equation (3.123),
we have:

1

n

nX

i=1

( bTi _ ⌘)2 
1

n

nX

i=1

( bTi _ ⌘)Ti + 2⌘ (�rn,2(µn, µ1,�))
1
2

(using Equation (3.124))

=
1

n

nX

i=1

( bTi _ ⌘) bTi + 2⌘ (�rn,2(µn, µ1,�))
1
2 . (3.125)

Note that the final equality in Equation (3.125) holds, since
P

n

i=1(
bTi_⌘)Ti =P

n

i=1(
bTi _ ⌘) bTi, by again since we know that bTi are the PAVA solutions. We

then apply Cauchy-Schwartz to this summand of Equation (3.125) to obtain
the following upper bound with probability at least 1� ��1, for ��1 2 (0, 1).

1

n

nX

i=1

( bTi _ ⌘)2 
1

n

vuut
nX

i=1

( bTi _ ⌘)2

vuut
nX

i=1

bT 2
i
+ 2⌘ (�rn,2(µn, µ1,�))

1
2 , (3.126)

Now observe that since ⌘ > 0, the following holds a.s.:

⌘ = |⌘| =

vuut 1

n

nX

i=1

⌘2 

vuut 1

n

nX

i=1

( bTi _ ⌘)2 (3.127)
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Then using Equation (3.127) we have the following:

⌘

0

@

vuut 1

n

nX

i=1

( bTi _ ⌘)2 �

vuut 1

n

nX

i=1

bT 2
i

1

A



vuut 1

n

nX

i=1

( bTi _ ⌘)2
0

@

vuut 1

n

nX

i=1

( bTi _ ⌘)2 �

vuut 1

n

nX

i=1

bT 2
i

1

A

(using Equation (3.127))

=
1

n

nX

i=1

( bTi _ ⌘)2 �
1

n

vuut
nX

i=1

( bTi _ ⌘)2

vuut
nX

i=1

bT 2
i
. (3.128)

By applying the upper bound derived in Equation (3.126) to Equation (3.128)
we obtain the following:

vuut 1

n

nX

i=1

( bTi _ ⌘)2 �

vuut 1

n

nX

i=1

bT 2
i
 2 (�rn,2(µn, µ1,�))

1
2 , (3.129)

with probability at least 1� ��1, for ��1 2 (0, 1).

Now we will show that
q

1
n

P
n

i=1
bT 2
i

is a constant distance away from
q

1
n

P
n

i=1 T
2
i

, which will imply that for large n the value at 0 is smaller than the
target value, i.e., G(�1) := G(0)  1

n

P
n

i=1 T
2
i

as required per Equation (3.112).

On the other hand using Lemma 3.47, we have:

�����
1

n

nX

i=1

(Ti � f(µi,�))
2 � 1

n

nX

i=1

�
µ
2
i + �

2 � f(µi,�)
2
�
�����  l(�, C,�), (3.130)

with probability at least 1� ��2, where l(�, C,�) := ��

q
5�2+4C

n
. Subtracting
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the inequalities in Equations (3.124) and (3.130) we then obtain:

1

n

nX

i=1

T
2
i �

1

n

nX

i=1

bT 2
i +

2

n

nX

i=1

( bTi � Ti)f(µi,�)

� 1

n

nX

i=1

�
µ
2
i + �

2 � f(µi,�)
2
�
� l(�, C,�)� �rn,2(µn, µ1,�) (3.131)

() 1

n

nX

i=1

T
2
i �

1

n

nX

i=1

bT 2
i

� 1

n

nX

i=1

�
µ
2
i + �

2 � f(µi,�)
2
�

�
 
l(�, C,�) + �rn,2(µn, µ1,�) +

2

n

nX

i=1

( bTi � Ti)f(µi,�)

!
. (3.132)

Now, in order sharpen the lower bound in Equation (3.132), we upper bound
the term 2

n

P
n

i=1(
bTi � Ti)f(µi,�) as follows:

2

n

nX

i=1

( bTi � Ti)f(µi,�)

=
2

n

nX

i=1

( bTi � Ti)(f(µi,�)� bTi) (since bTi are the PAVA solutions.)

 2

n

vuut
nX

i=1

( bTi � Ti)
2

vuut
nX

i=1

(f(µi,�)� bTi)
2 (by Cauchy-Schwartz.)

 2

n

vuut
nX

i=1

(f(µi,�)� Ti)
2

vuut
nX

i=1

(f(µi,�)� bTi)
2

(since bTi are PAVA, i.e., LSE solutions.)

= 2

vuut 1

n

nX

i=1

(f(µi,�)� Ti)
2

vuut 1

n

nX

i=1

⇣
f(µi,�)� bTi

⌘2
(3.133)

 2 (l(�, C,�)�rn,2(µn, µ1,�))
1
2 , (3.134)

with probability at least with probability at least 1 � �
�1 � �

�2, by the
union bound. Note that to obtain Equation (3.134) we applied the bounds in
Equations (3.146) and (3.130) to Equation (3.133). Now using the bound in
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Equation (3.134) in Equation (3.132) we conclude that:

1

n

nX

i=1

T
2
i �

1

n

nX

i=1

bT 2
i

� 1

n

nX

i=1

g(µi,�)

�
⇣
l(�, C,�) + �rn,2(µn, µ1,�) + 2 (l(�, C,�)�rn,2(µn, µ1,�))

1
2

⌘
(3.135)

Now from Equation (3.49) we have that g(µ,�) � g(0,�) = �
2
�
1� 2

⇡

�
, for

each µ > 0. Hence if � �  > 0, then

1

n

nX

i=1

T
2
i �

1

n

nX

i=1

bT 2
i �  2

✓
1� 2

⇡

◆
�
⇣
l(�, C,�) + �rn,2(µn, µ1,�) + 2 (l(�, C,�)�rn,2(µn, µ1,�))

1
2

⌘
> 0

(3.136)
1
n

P
n

i=1 T
2
i
� 1

n

P
n

i=1
bT 2
i
�  2

�
1� 2

⇡

�
> 0, with probability at least 1���1���2.

Hence under the assumption that rn,2(f, µn, µ1,�) = o(1), for sufficiently large
n the above will be bigger than a constant. Now by Lemma 3.49 we have
1
n

P
n

i=1 T
2
i
 1

n

P
n

i=1(µ
2
i
+�

2
)+2��

q
2�2+4C

n
which is upper bounded by some

constant for sufficiently large n given our assumption that 1
n

P
n

i=1 µ
2
i
 C,

for each n 2 N, and �   for some constants C, > 0. It follows that by
applying Lemma 3.18 to Equation (3.136) we have:

vuut 1

n

nX

i=1

T
2
i
�

vuut 1

n

nX

i=1

bT 2
i
�  > 0, (3.137)

for sufficiently large n, where  is some positive constant, with probability at
least 1� ��1 � 2�

�2.
Going back to equation (3.129), it follows that required equation will have

a solution between
h
0,

q
1
n

P
T
2
i

i
, with probability at least with probability

at least 1� ��1 � 2�
�2, as required.

3.D.3 Proof of Theorem 3.13

Lemma 3.50 (Upper and lower bounds for b�). Assume that there exist con-
stants  , , C > 0 such that   �   and 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N.
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Then under the ASCI setting per Definition 3.2, the following hold:

b� � K1 with probability at least 1� ��1 � 2�
�2, for sufficiently large n.

(3.138)
b�  K2 with probability at least 1� ��1 � 2�

�2, for sufficiently large n,
(3.139)

where K1,K2 > 0 are fixed constants and ��2
, �

�1 2 (0, 1) are as in the proof
of Theorem 3.12.

Proof of Lemma 3.50. We prove each property (Equations (3.138) and (3.139))
in turn.

(Proof of Equation (3.138).) We note that by assumption we have 0 <  
�   . We now want to show that b� is positively bounded away from 0, with
high probability. First, observe that per Theorem 3.12 that b� uniquely solves
G(b�) = 1

n

P
n

i=1 T
2
i
, with high probability. Per Equation (3.115), we then have

that:

G(b�)�G(0) =
1

n

nX

i=1

bT 2
i �

1

n

nX

i=1

( bTi _ ⌘)2. (3.140)

We then have by the Mean Value Theorem, and the fact that G(�) is increasing
for each � � 0 (per Lemma 3.32), that there exists a e� 2 [0, b�] such that

G(b�)�G(0) = G
0
(e�)b�. (3.141)

Now we have e�  b�, or equivalently that 2e�  2b�. Since G
0
(�)  2�

using Equation (3.81), it follows that G
0
(�)  2e�  2b�. Using this and

Equation (3.141), we see that:

G(b�)�G(0) = G
0
(e�)b�  (2b�) b�  2b�2, (3.142)

Now using Equation (3.142) and the proof of Theorem 3.12 we have that
G(b�)�G(0) =

1
n

P
n

i=1 T
2
i
� 1

n

P
n

i=1(
bTi _ ⌘)2 is positively bounded away from

0 with high probability. So it follows that b� �
q

G(b�)�G(0)
2 > 0, with high

probability, as required. ⌅

(Proof of Equation (3.139).) First, observe that per Theorem 3.12 that
b� uniquely solves G(b�) =

1
n

P
n

i=1 T
2
i
, with high probability. By Defini-

tion 3.31 this implies that b�  1
n

P
n

i=1 T
2
i
, with high probability. Moreover

by Lemma 3.49 we have 1
n

P
n

i=1 T
2
i
 1

n

P
n

i=1(µ
2
i
+ �

2
) + 2��

q
2�2+4C

n
with
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probability at least ��1, where 1� ��2 for � 2 (0, 1). This in turn is bounded,
in high probability, by some constant, K2 > 0 for sufficiently large n given our
assumptions 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N, and �   , as required. ⌅

Thus all properties specified in Equations (3.138) and (3.139) are now proved.

Theorem 3.13 (b� is close to �). Under the assumptions of Theorem 3.12,
we have that |� � b�| . (�rn,2(µn, µ1,�))

1/2
+ �n

�1/2 with probability at least
1� ��1 � 2�

�2, where ��1
, �

�2 2 (0, 1).

Proof of Theorem 3.13. Recall our map G(�) := �
2
+

1
n

P
n

i=1(f
�1

( bTi_f(⌘,�),�))2
as originally defined in Equation (3.110). We will first try to show that G(�)

is close to 1
n

P
n

i=1 T
2
i
. First note that f

�1
(· _ f(⌘,�),�) is a L :=

1
2�(⌘/�)�1 -

Lipschitz function per Lemma 3.27 and the fact that � is a (both upper and
lower) bounded quantity by assumption. Thus it follows that

���f�1
( bTi _ f(⌘,�),�)� f

�1
(f(µi,�),�)

���  L

��� bTi _ f(⌘,�)� f(µi,�)

��� ,
(3.143)

and therefore

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�)� µi)
2 (3.144)

=
1

n

nX

i=1

���f�1
( bTi _ f(⌘,�),�)� f

�1
(f(µi,�),�)

���
2

 L
2

n

nX

i=1

( bTi _ f(⌘,�)� f(µi,�))
2 (using Equation (3.143))

 L
2

n

nX

i=1

( bTi � f(µi,�))
2 (using Equation (3.43) and Lemma 3.19.)

In sum, we have established:

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�)� µi)
2  L

2

n

nX

i=1

( bTi � f(µi,�))
2
, (3.145)

We saw earlier by Theorem 3.48 we have that

1

n

nX

i=1

⇣
bTi � f(µi,�)

⌘2
 �rn,2(µn, µ1,�), (3.146)
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with probability at least 1� ��1, for ��1 2 (0, 1). Combining Equations (3.145)
and (3.146) we have that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�)� µi)
2  L

2
�rn,2(µn, µ1,�) (3.147)

with probability at least 1���1, for ��1 2 (0, 1). Thus by the triangle inequality,
and reverse triangle inequality we have

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�))
2 2

"
1

n

nX

i=1

µ
2
i � hn,

1

n

nX

i=1

µ
2
i + L

2
�rn,2(µn, µ1,�) + hn

#

(3.148)

where hn := 2

q
1
n

P
n

i=1 µ
2
i

q
1
n

P
n

i=1(f
�1( bTi _ f(⌘,�),�)� µi)

2 . Given our
assumption that 1

n

P
n

i=1 µ
2
i
 C, for each n 2 N, we have that:

hn  2L (C�rn,2(µn, µ1,�))
1
2 (3.149)

with probability at least 1 � �
�1, for ��1 2 (0, 1). Then combining Equa-

tions (3.148) and (3.149), we have that there exists some l1 2 [�2, 2] for
sufficiently large n such that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�))
2
=

1

n

nX

i=1

µ
2
i + l1L (2C�rn,2(µn, µ1,�))

1
2 . (3.150)

with probability at least 1� 2�
�1, for ��1 2 (0, 1), using the union bound.

Similarly, using Lemma 3.49 we have that there exists some l2(�, C, �) 2 R
such that

1

n

nX

i=1

T
2
i = �

2
+

1

n

nX

i=1

µ
2
i + l2(�, C, �)n

�1/2
. (3.151)

with probability at least 1� ��2, for ��2 2 (0, 1). Moreover per Theorem 3.12
we have that b� uniquely solves G(b�) = 1

n

P
n

i=1 T
2
i
, with high probability. That

is:

G(b�) = b�2 + 1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�))2 = 1

n

nX

i=1

T
2
i . (3.152)

Then combining Equations (3.151) and (3.152), we conclude that

|G(�)�G(b�)|  l1L (2C�rn,2(µn, µ1,�))
1
2 + l2(�, C, �)n

�1/2
. (3.153)
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We now consider two cases, namely b� > � and � > b�. In the first case,
with b� > �, we seek to show that G

0
(⇠) � K1 > 0, in high probability, for

each ⇠ 2 (�, b�). Here K1 represents a positive constant. By Lemma 3.50
both � and b� are upper and lower bounded by some constants which implies
that ⇠ is also upper and lower bounded by some constants call them C1 and

C2, i.e., C1  ⇠  C2. Since G
0
(⇠) � J(⇠) = ⇠

✓
1
2 �

⌘/⇠�(⌘/⇠)
2�(⌘/⇠)�1

◆
. As we

argued earlier J(⇠) is positive and since it is a continuous function and the set
[C1, C2] is compact it achieves its minimum, which is strictly positive. Hence
G

0
(⇠) � K1 > 0.

Similarly, in the second case, with � > b�, we can also show that G
0
(⇠) �

K2 > 0, in high probability, for each ⇠ 2 (�, b�). Where again, K2 represents a
positive constant.

Then by using the Mean Value Theorem we have that there exists some
⇠ 2 (�, b�) such that |G(�)�G(b�)| = G

0
(⇠) |� � b�| > min(K1,K2) |� � b�|.

Thus from equation (3.153) we have

l1L (2C�rn,2(µn, µ1,�))
1
2+l2(�, C, �)n

�1/2
= |G(�)�G(b�)| � min(K1,K2) |� � b�| ,

(3.154)
and hence |� � b�| . l1L (2C�rn,2(µn, µ1,�))

1
2 + l2(�, C, �)n

�1/2.

3.D.4 Proof of Theorem 3.14

Theorem 3.14 (bµascifit is close to µ). Under the assumptions of Theorem 3.12
and Theorem 3.13, we have that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� µi)
2 . �rn,2(µn, µ1,�) + �

2
n
�1

, (3.22)

with probability at least 1� ��1 � 2�
�2.

Proof of Theorem 3.14. We will now consider 1
n

P
n

i=1(f
�1

( bTi_f(⌘, b�), b�)�µi)
2.
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We observe that a.s.:

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� µi)
2 (3.155)

 1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� f
�1

( bTi _ f(⌘,�),�))
2

+
1

n

nX

i=1

(f
�1

( bTi _ f(⌘,�),�)� µi)
2

+ 2

vuut 1

n

nX

i=1

(f�1( bTi _ f(⌘,�),�)� µi)
2

vuut 1

n

nX

i=1

(f�1( bTi _ f(⌘, b�), b�)� f�1( bTi _ f(⌘,�),�))2 ,

(3.156)

where the transition between Equations (3.155) and (3.156) was by applying
adding and subtracting f

�1
( bTi_f(⌘,�),�), then applying the triangle inequality,

and finally applying the Cauchy-Schwartz inequality to the cross product
summand.

We now set to upper bound the Equation (3.156) further. First, we saw in
Equation (3.147) that 1

n

P
n

i=1(f
�1

( bTi _ f(⌘,�),�)� µi)
2  L

2
�rn,2(µn, µ1,�),

with probability at least 1� ��1, for ��1 2 (0, 1). Next, we will tackle the term

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� f
�1

( bTi _ f(⌘,�),�))
2
. (3.157)

Note that map � 7! f
�1

( bTi _ f(⌘,�),�) is a L :=

p
2/⇡ exp(�µ

2
/�

2
/2)

2�(µ/�)�1 
p

2/⇡
2�(⌘/�)�1 -Lipschitz per Lemmas 3.22 and 3.27, and in addition both �, b�
are upper and lower bounded by constants. It follows that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� f
�1

( bTi _ f(⌘,�),�))
2

 1

n

nX

i=1

|L(� � b�)|2 (using L-Lipschitz property.)

= L
2
(� � b�)2

. 2C�rn,2(µn, µ1,�) + �
2
n
�1

, (3.158)

where Equation (3.158) follows from Theorem 3.13 with probability at least
1� ��1 � 2�

�2.
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Then applying the upper bounds in Equations (3.157) and (3.158) appro-
priately to each corresponding summand of Equation (3.156), we conclude
that

1

n

nX

i=1

(f
�1

( bTi _ f(⌘, b�), b�)� µi)
2 . �rn,2(µn, µ1,�) + �

2
n
�1

, (3.159)

with probability at least 1� ��1 � 2�
�2.
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3.E Proofs of Section 3.4

3.E.1 Mathematical Preliminaries

Since we adapt the lower bound construction from Bellec and Tsybakov
(2015) for our ASCI setting, we first introduce the relevant related nota-
tion and definitions here first for classes of monotonic sequences. We denote
S" :=

�
µ := (µ1, . . . , µn)

> ��µ1  . . .  µn

 
to be the set of all non-decreasing

sequences. We define k(µ) � 1, for µ 2 S", to be the integer such that
k(u)� 1 is the number of inequalities µi  µi+1 that are strict for i 2 [n� 1]

(i.e., number of jumps of µ). The class of monotone functions we will con-
sider are S"

(V
⇤
) :=

�
µ 2 S" ��V (µ)  V

⇤ , for some fixed V
⇤ 2 R, and

V (µ) = µn � µ1, is the total variation of any µ 2 S". We also consider
the restricted class of monotone sequences, S"

k⇤ :=
�
µ 2 S" �� k(µ)  k

⇤ , and
S"

(V
⇤
, ⌘, C) :=

�
µ 2 S"

(V
⇤
)
�� 1
n

P
n

i=1 µ
2
i
 C, µ1 > ⌘ > 0

 
.

3.E.2 Proof of Proposition 3.51

We follow directly the proof technique and construction from Bellec and Tsy-
bakov (2015, Proposition 4), but make suitable adaptations for our ASCI setup.
We largely follow their notation to help readers align the commonalities and
differences in the underlying constructions used. Our first lower bound result
is stated in Proposition 3.51.

Proposition 3.51 (Minimax lower bounds). Let n � 2, V
⇤
> 0 and � > 0.

There exist absolute constants c, c
0
> 0 such that for any positive integer k

⇤  n

satisfying (k
⇤
)
3  16n(V ⇤)2

�2 we have

inf
bµ

sup

S"
k⇤ \S"(V ⇤,⌘,C)

Pµ

✓
1

n
kbµ� µk2 � c�

2
k

n

◆
> c

0 (3.160)

where ⌘ > 0 is a fixed positive constant per Equation (3.5), C � (V
⇤
)
2
+ 4�

2
+

2⌘
2, � :=

1
8

q
�2k⇤
n

, Pµ denotes the distribution of (R1, . . . , Rn)
> satisfying

Equation (3.4), and inf bµ is the infimum over all estimators.

Proof of Proposition 3.51. Let n be a multiple of k⇤ 2 N. Then for any !,!0 2
{0, 1}k⇤ , using the Varshamov-Gilbert bound (Tsybakov, 2009, Lemma 2.9),
there exists a set ⌦ 2 {0, 1}k⇤ such that:

0 = (0, . . . , 0)
> 2 ⌦, log(|⌦|� 1) � k

⇤

8
, and d

HAMM

�
!,!0�

>
k
⇤

8
(3.161)
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for any two distinct !,!0 2 ⌦. For each ! 2 ⌦, define a vector u! 2 Rn

componentwise, for each component index i 2 [n] as follows:

u!
i
:=

⌅
(i� 1)

k
⇤

n

⇧
V

⇤

2k⇤
+ �!b(i�1) k

⇤
n
c+1. (3.162)

ū!
i
:= u!

i + ⌘. (3.163)

where � :=
1
8

q
�2k⇤
n

and ⌘ > 0 is a fixed positive constant per Equation (3.5).
Importantly we note that u!

i
per Equation (3.162) is precisely as constructed

in Bellec and Tsybakov (2015, Proposition 4). However, critically the construc-
tion in Equation (3.163) is adapted to our ASCI setting, by componentwise
translation by ⌘ > 0. More compactly, it is also convenient to represent this
construction as ū! := u!

+ ⌘, where ⌘ := (⌘, . . . , ⌘)
> 2 Rn.

As per Bellec and Tsybakov (2015, Proposition 4) we first note the following
properties for u!

i
, for each i 2 [n]. For any ! 2 ⌦,u! is a piecewise constant

sequence with k (u!
)  k

⇤
,u! is a non-decreasing sequence because �  V

⇤

2k⇤ ,
and by construction V (u!

)  V
⇤. Thus, u! 2 S"

k⇤ \ S"
(V ) for all ! 2 ⌦.

Now we observe the following corresponding properties of the ⌘-translated
sequence ū!. First note that since for any ! 2 ⌦,u! is a piecewise constant
non-decreasing sequence, so is ū!

j
, by translation invariance. Next, consider

any arbitrary index j 2 [n] relating to a ‘jump’ in u!, i.e., u!
j
< u!

j+1 (note
the strict inequality). We then have that:

u!
j < u!

j+1 (by assumption.)
() u!

j + ⌘ < u!
j+1 + ⌘

() ū!
j < ū!

j+1 (using Equation (3.163))

So any ‘jump’ in the original sequence u! corresponds to a jump in the ⌘-
translated sequence ū!. That is, we have k (ū!

) = k (u!
)  k

⇤. In addition,
we note that

V (ū!
) = ū!

n � ū!
1

= (u!
n + ⌘)� (u!

1 + ⌘)

= u!
n � u!

1

= V (u!
)

 V
⇤ (by construction of u!.)

By construction we also have that ū!
1 := u!

1 + ⌘ � ⌘ > 0, since u!
1 � 0 by

construction (in fact each component is non-negative). Finally, per our ASCI
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setting, we want to check if there exists a C > 0, such that 1
n

P
n

i=1 (ū
!
i
)
2  C,

for each n 2 N. Given ū! we observe the following for each component index
i 2 [n]:

(ū!
i )

2
:= (u!

i + ⌘)
2 (using Equation (3.162))

 2

⇣
(u!

i )
2
+ ⌘

2
⌘

(using Lemma 3.20)
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So indeed it follows from Equation (3.164) that:
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So that we have ū! 2 S"
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Set for brevity P! = Pū! . The Kullback-Leibler divergence dKL(P! ||P!0),

between P! and P!0 , is equal to n

2�2

���u! � u!0
���
2

for all !,!0 2 ⌦. Thus,

dKL

⇣
P! || P0

⌘
=
�
2
nd

HAMM
(0,!)

2k⇤�2
 k

⇤

128
 log(|⌦|� 1)

16
(3.166)

Applying Tsybakov (2009, Theorem 2.7) with ↵ = 1/16 completes the proof.

3.E.3 Proof of Proposition 3.16

From Proposition 3.51, in line with Bellec and Tsybakov (2015, Corollary 5),
we immediately obtain the following result in Proposition 3.16. Once again,
we utilize the technique of Bellec and Tsybakov (2015, Corollary 5) to obtain
the following corollary. The important changes to ensure that we adapt to our
ASCI setting are captured in Proposition 3.51 and our proof thereof.

Proposition 3.16 (Minimax lower bounds). Let n � 2, V
⇤
> 0 and � > 0, and

define ern,2(V ⇤
,�) := max

�⇣
�
2
V

⇤

n

⌘ 2
3
,
�
2

n
}. Then, there exist absolute constants

c, c
0
> 0 such that:

inf
bµ

sup

S"(V ⇤
, ⌘, C)

Pµ

✓
1

n
kbµ� µk2 � cern,2(V ⇤

,�)

◆
> c

0 (3.23)

Proof of Proposition 3.51. As per Bellec and Tsybakov (2015, Corollary 5), to
prove this corollary it is enough to note that if 16n(V ⇤)2

�2 � 1, by choosing k
⇤ in

Proposition 3.51 as the integer part of
⇣
16n(V ⇤)2

�2

⌘ 1
3 , we obtain the lower bound

corresponding to
⇣
�
2
V

⇤

n

⌘ 2
3 under the maximum in Equation (3.23). On the

other hand, if 16n(V ⇤)2

�2 < 1 the term �
2

n
is dominant, so that we need to have

the lower bound of the order �
2

n
, which is trivial (it follows from a reduction to

the bound for the class composed of two constant functions).
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Four

Uniform Location Estimation on
Convex Bodies

Abstract: In this paper we generalize classical univariate uniform location-
scale estimation over an interval, to multivariate uniform location-scale
estimation over general convex bodies. Unlike the univariate setting, the
sample observations are no longer totally ordered and previous estimation
techniques prove insufficient to account for the more refined geometry of the
generating process. Our focus is location estimation, though we consider
both known and unknown scale parameter regimes. Under both scaling
regimes, considering the dimension d as fixed, our proposed location esti-
mators converge at an n

�1 rate. In fact, our high probability upper bound
convergence guarantees hold for any location estimator lying in a region
known as the “critical set”. We provide minimax lower bounds to justify
the optimality of our estimators in terms of the sample complexity. To
ensure practicality of our estimators, we provide algorithms with provable
convergence rates for our estimators, over a wide class of convex bodies.
We illustrate our findings with extensive simulations.

The work in this chapter was done jointly with Matey Neykov. It is based
on a (forthcoming) preprint with the title “Uniform Location Estimation
on Convex Bodies”.
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4. uniform location estimation on convex bodies

4.1 Introduction

Many problems in statistical theory can be reformulated as location and scale
parameter estimation problems. In particular, an elementary classical example
is univariate uniform location estimation (Lehmann and Casella, 1998, Ex-
ample 3.19). This underlying generating process for estimation purposes is
described as follows. Suppose we independently sample n points uniformly
over a fixed compact interval, e.g., Xi

i.i.d.⇠ Unif[�1
2 ,

1
2 ] for each i 2 [n]. Now

assume that we instead observe the translated sample, i.e., Yi
a.s.
= Xi + ✓. We

then have that Yi
i.i.d.⇠ Unif[✓ � 1

2 , ✓ +
1
2 ], for each i 2 [n]. In this setting, the

translation quantity ✓ 2 R is a fixed but unknown location parameter, to be
estimated. Thus, the location estimation problem here involves estimating ✓ in
a statistically and computationally efficient manner.

There are various approaches location estimation in this univariate uniform
setting. For example, the MLE of ✓ can be shown to lie in an interval, i.e.,
b✓MLE 2 [Y(n) � 1

2 , Y(1) +
1
2 ]. The MLE in this specific case is a particularly

popular pedagogical example (Whittinghill and Hogg, 2001). This is largely
because the estimated location parameter of interest, ✓, appears in the support
of the uniform density function. As a result this requires a more careful
analysis of the resulting likelihood function. Under square loss, the risk optimal
equivariant estimator for ✓ in this case has closed form and is known as the
Pitman location estimator. It is given by b✓pit =

Y(1)+Y(n)

2 (Pitman, 1939a,
Section 2). The simple closed form of the Pitman estimator and the MLE in
this univariate uniform setting are both efficient to compute, and also easy to
update in online settings.

Notably, while b✓MLE is any convex combination of the interval endpoints�
Y(1) +

1
2 , Y(n) �

1
2

 
, b✓pit is uniquely given by their midpoint (centroid). Fur-

thermore, both the MLE and Pitman estimators here highlight the interesting
geometry of the location estimation process in that they both depend on the
extremal order statistics (i.e.

�
Y(1), Y(n)

 
) of the observed samples. These order

statistics arise naturally here since both estimators specifically exploit the total
ordering of our real-valued univariate observations. We further note that in this
univariate case the Pitman estimator b✓pit is well studied in that its asymptotic
distribution is known and importantly that it converges to the true parameter
✓ in at an n

�1 rate (Robbins and Zhang, 1986a, Equation 1.15).
It is also simple to generalize the aforementioned univariate location esti-

mation problem to a problem with unknown scale. In this case, suppose one
instead observes samples Yi

a.s.
= �Xi + ✓, for some fixed but unknown scale

parameter � > 0. We then have that Yi
i.i.d.⇠ Unif[✓ � �

2 , ✓ +
�

2 ]. Treating the
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4.1. Introduction

scaling �, as a nuisance parameter, a natural estimator of the location parame-
ter ✓ in this case would be the MLE which takes the form1 b✓MLE =

Y(1)+Y(n)

2 .
Once again this estimator is simple to compute and one can show that it will
converge to its target parameter at a n

�1 rate. This leads us to three natural
follow-up questions:

Three core questions: First, under both known and un-
known scaling regimes, how can one generalize this univariate
uniform location estimation problem to a multivariate setting?
Second, how can one derive statistically optimal location es-
timators and understand their geometry in this multivariate
setting? Third, what are practical algorithms to compute such
estimators under a wide variety of use-cases with convergence
rate guarantees?

Investigating these three core questions of interest motivates our work in this
paper.

4.1.1 Multivariate uniform location estimation on convex bodies

In order to investigate our three proposed questions of interest, we first for-
mally define the multivariate uniform distribution on a convex body K 2 Kd.
Throughout our paper, a convex body refers to compact, convex set, with a
non-empty interior in Rd.

Definition 4.1 (Multivariate uniform distribution on a convex body). Let
d 2 N, and K 2 Kd be fixed. We say that X ⇠ Unif[K] if and only if its
probability density function, fX : Rd ! R>0, is defined as follows:

fX(x) :=
IK(x)

vold (K)
(4.1)

Remark 4.2. Importantly, per Definition 4.1, the uniform density of X is
completely characterized by its support, i.e., the underlying (fixed) convex
body K. Since K has non-empty interior, it follows that vold (K) > 0, for each
d 2 N. So fX(x) is well-defined and non-degenerate.

Remark 4.3. Given that the support of K 2 Kd, of X, is a convex body, the
convex geometric properties of K will play a crucial role in our work. We
therefore introduce the required convex analytic details as needed, to ensure
our work is self-contained.

1A formal justification for this claim is provided in Section 4.B.1.
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4. uniform location estimation on convex bodies

We then consider the following generalized multivariate uniform location-
scale generating process on a convex body.

Definition 4.4 (Multivariate uniform location-scale generating process). Let
d � 1 be a fixed positive integer. Further, let K 2 Kd also be a fixed, and
assume that d,K, and centroid (K) are all known to the observer. Let v 2 Rd

be a fixed but unknown location parameter. We then consider n observations,
(Yi)

n

i=1, where each observation Yi is generated from the following model:

Yi

a.s.
= v + �Xi (4.2)

s.t. Xi

i.i.d.⇠ Unif[K] (4.3)
and � > 0 (4.4)

In (4.4), we consider both scaling regimes in which the fixed scale parameter �
is either known or unknown to the observer, and we assume that � does not
scale with n. In the latter case � is treated as a nuisance parameter.

Remark 4.5. We want to emphasize that for d = 1, the univariate uniform
location generating process case described earlier is indeed a very special case of
Definition 4.4 for two main reasons. First it is the only case where observations
are totally ordered. Second, compact intervals are the only convex bodies when
d = 1. Both of these facts which simplify the univariate estimation process
no longer directly apply when d � 2. Hence our described setting above is
a minimal strict generalization of the classical univariate uniform location
estimation setting.

For simplicity, we illustrate the geometry of this underlying location-scale
data generating process in Figure 4.1.1, for the particular case where K ⇢ R2

is a regular convex nonagon2. Our primary goal here is to estimate the location
parameter v (treating � as a nuisance parameter) ensuring statistical and
computational guarantees. In our multivariate setting we hold the dimension
d 2 N, of our location parameter space to be fixed and allow the number of
observed samples n, to increase asymptotically. Additionally we will assume
that all estimation errors are computed under square loss, in high probability.

We note that our proposed multivariate generating process described now
answers our first core question of interest. Namely, per Remark 4.5 we have
a minimal assumption multivariate generalization of the original univariate
uniform location estimation problem in both known and unknown scaling
regimes.

2For convenience, this will be used as a running illustrative example throughout the
paper.
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4.1. Introduction

Figure 4.1.1: We observe samples Yi
a.s.
= v + �Xi, with Xi

i.i.d.⇠ Unif[K], goal is to
estimate v.

Remark 4.6. Given that the centroid (K) is assumed to be known to the
observer, we will assume WLOG that centroid (K) = 0 2 Rd. This is so, since
the entire convex body K can always be translated by � centroid (K) to shift its
centroid to 0. Recall that Xi

i.i.d.⇠ Unif[K], for each i 2 [n]. In our multivariate
uniform setting, we then have that each Xi is then also mean centered at 0 i.e.
E (Xi) = 0 for each i 2 [n]. The observer having this knowledge of the centroid
of the original supporting distribution is a standard assumption in location
estimation.

Despite the univariate uniform location-scale estimation being a well studied
estimation problem, to the best of our knowledge our proposed multivariate
generalization of uniform location-scale estimation has not been explicitly
studied previously. A particular emphasis of this work is to consider a wide
variety of location estimators under this setting and understand the statistical
and computational and trade-offs that arise in the estimation process.

4.1.2 Prior and related work

This paper is fundamentally motivated by better understanding multivariate
uniform location parameter estimation over convex bodies under general scaling
regimes. As previously noted, to the best of our knowledge our proposed
multivariate generalization to the classical univariate uniform location-scale
estimation has not been formally studied in the literature. However, we observe
that our multivariate uniform location-scale estimation setting lies at the
intersection of two main research areas. These include location-equivariant
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4. uniform location estimation on convex bodies

estimation, and more indirectly Chebyshev or `1-estimation under uniform
noise. As such, we review the most relevant literature from these two broad
fields as relevant for our multivariate uniform location estimation purposes.

Location Equivariant Estimation

The general location-scale estimation problem was first formally studied by
Pitman in Pitman (1939a) for the estimation of univariate location and scale
parameters under square risk loss. Notably, Pitman applied a general location
estimation technique to the univariate gaussian distribution, the shifted expo-
nential distribution, and also derived the univariate uniform location estimator,
b✓pit, described previously. Pitman’s location estimator is remarkably flexible in
that it provides a closed-form integral to estimate the location parameter in
any univariate location family. Pitman’s work in the estimation of parameters
of general univariate location-scale families under squared error loss was quickly
extended to inference, i.e., hypothesis testing of the location-scale parameters
in Pitman (1939b). Since this work, the minimaxity and additional decision-
theoretic properties of univariate Pitman location estimators on the real line
are well documented in the statistics literature (Lehmann and Casella, 1998,
Chapter 3) and (Strawderman, 2000, Example 3). These minimaxity results
for univariate Pitman estimators were extended to the more general case where
observations are independent, but not identically distributed in (van Eeden,
2006, Chapter 4).

Notably, this seminal work of Pitman (1939a) led to the development of the
more general theory of equivariant estimation. Broadly speaking, equivariant
estimation studies the statistical decision-theoretic properties of estimators
that satisfy certain ‘symmetry restrictions’. Since our emphasis in this paper
is location parameter estimation, we will focus only on location-equivariant
estimators. The ‘symmetry restriction’ that such location-equivariant estimators
satisfy is an invariance under the common translation of the data. The sample
mean, sample median, and the Pitman estimator are popular examples of
such location-equivariant estimators. A key property of the Pitman location
estimator is that under square loss, of all location-equivariant estimators of ✓
the Pitman estimator is the one with minimum risk. Commonly, the Pitman
location estimator is referred to as the minimum risk equivariant (MRE)
estimator of the location parameter (Lehmann and Casella, 1998, Theorem 3.20).
For more details we refer the interested reader to (Lehmann and Casella, 1998,
Chapter 3) and (Keener, 2010, Chapter 10) as the standard modern references.

Moreover the univariate Pitman location estimator can be analagously
extended to the multivariate setting per (Maruyama and Strawderman, 2021,
Equation (3.8)). Under square loss, the multivariate Pitman location estimator
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is also known to be minimax optimal for the location parameter (see Maruyama
and Strawderman, 2021, Remark 3.1). Furthermore, Pitman estimators were
shown to be locally minimax in (Strasser, 1982), and globally minimax under
even more general equivariant settings in (Milbrodt, 1987). Despite the versa-
tility of Pitman’s technique, we note that its rate of convergence to the true
location parameter is not known in general. Such rates need to be derived with
respect to the underlying structure of the specific generative location family
being studied. In particular, in our specific multivariate uniform location esti-
mation setting we are not aware of convergence rates of Pitman’s estimator to
v, the location vector. This presents another challenge of deriving convergence
rates for the Pitman estimator in our setting.
Chebyshev estimation under uniform noise

Furthermore, we re-emphasize here that our work in this paper is focused on the
multivariate uniform location estimation over convex bodies. As such we note
that some of the techniques we use in this paper are broadly related to those
used in Chebyshev or `1 estimation under uniform noise. Recall, in linear
regression the Chebyshev estimator is an alternative to the ordinary least squares
estimator which minimizes estimation error with respect to the `1 risk loss.
Although our paper is concerned with multivariate uniform location estimation,
not regression, we note that (Robbins and Zhang, 1986b; Schechtman and
Schechtman, 1986) studied the convergence rates of the Chebyshev estimator
for the simple linear regression setting with uniformly distributed noise. More
recently Yi and Neykov (2021) studied the favorable optimality properties of
the Chebyshev estimator for multivariate regression under uniform noise. The
specific connections of Chebyshev estimation to our work will become clear in
our multivariate uniform location estimation in the unknown scaling regime.

4.1.3 Main contributions

Our contributions in this paper are threefold and are summarized as follows:

• Computable estimators with non-asymptotic upper bounds: we
consider both known and unknown � regimes, and propose estimators
of v. In both scaling regimes, considering the dimension d as fixed, our
proposed location estimators converge at a n

�1 rate. In fact, our high
probability upper bound convergence guarantees hold for any location
estimator lying in a region known as the critical set, which we define
later. We demonstrate our proof techniques for convex body polytopes
in Rd and then extend them to general convex bodies K 2 Kd. We also
show that our scale estimator also converges at a n

�1 rate over general
convex bodies.
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4. uniform location estimation on convex bodies

• Minimax lower bounds: we provide matching high probability lower
bounds (up to constant) under the Euclidean norm and thus prove that
our location estimators are minimax optimal in this sense. This once
again considers the dimension d as fixed (and the proportionality constant
depends on d). Our proof techniques hold for arbitrary convex bodies
K 2 Kd.

• Provably efficient algorithms: We provide provably efficient algo-
rithms to demonstrate the computability of our location and scale esti-
mators in a variety of practical cases for our general problem setting. We
illustrate our key findings with detailed simulations.

Throughout our paper we emphasize the (convex) geometric intuition behind
our the various location estimators, and try use illustrations where possible to
highlight the convex geometry of the estimation process, or proof techniques
thereof.

4.1.4 Organization of the paper

The rest of this paper is organized as follows. In Section 4.1.5 we define
the main required notation used throughout the paper. In Section 4.2 we
first investigate a variety of location estimators in the (easier) known scaling
regime. In Section 4.3 we propose a location estimator in the (more challenging)
unknown scaling regime. In Section 4.4 we derive the upper and lower bounds
for a class of location estimators. For upper bounds, we begin with a “warm-up”
case where K 2 Kd is a convex polytope. We then show how to extend the
proof techniques to the case where K is a general convex body. We then
derive minimax lower bounds for location estimation in both scaling regimes.
In Section 4.5 we proceed to give practical algorithmic implementations of
our proposed estimators with provable convergence guarantees in relatively
general settings. In Section 4.6 we then illustrate our findings with extensive
simulations. In Section 4.7 we conclude by summarizing our results and some
future research directions.

4.1.5 Notation

Throughout this paper we use the following notational conventions. Any
additional section-specific notation will be introduced as needed.
Variables and inequalities

Unless specified otherwise, we typically use lowercase for scalars in R, e.g.
(x, y, z, . . .), boldface lowercase for vectors, e.g. (x,y, z, . . .), and boldface
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4.2. Location estimation (known � regime)

uppercase for matrices3, e.g. (X,Y,Z, . . .). We use . and & to mean  and
� up to positive universal constants. We say that a sequence an = O (1) if
there exists C > 0, N 2 N such that |an| < C for each n > N . Similarly,
an = O (bn) if an

bn
= O (1). We say that a sequence an = o (1) if an ! 0 as

n ! 1. Similarly, an = o (bn) if an

bn
= o (1). We say that Xn = oP (1) if for

every " > 0, P (|Xn| � ")
n!1���! 0. Similarly Xn = OP (1) if for every " > 0

there is a finite C" > 0 such that, for all n large enough P (|Xn| � C")  ".
Sets and related operations

We denote the finite set {1, . . . , n} by [n]. We define Kd to be the space of
convex bodies in Rd. That is, Kd is the collection of all compact, convex sets,
with non-empty interior in Rd. The Minkowski sum of two non-empty sets
A,B ⇢ Rd is defined as A + B := {a+ b |a 2 A, b 2 B}. Similarly for a
fixed vector v 2 Rd and a non-empty set K ⇢ Rd we define the translation
of K by v as v + K := {v} + K = {v + k |k 2 K}. For a given scalar
µ 2 R \ {0} we define µA := {µa |a 2 A} to be the scaling (or dilation)
of the non-empty set A by µ. When we write A � B, we define it to be
A�B := A+ (�B) = {a� b |a 2 A, b 2 B}. For a closed, non-empty convex
set K we define ⇧K(x) to be the Euclidean, i.e., `2-projection of x onto K. We
further denote B

d

2(x, r) :=
�
y 2 Rd

�� ky � xk2  r
 

to be the closed `2-ball in
Rd centered at x 2 Rd with radius r, and similarly B

d

2(x, r) denotes the open
`2-ball in Rd. Finally Sd�1 :=

�
x 2 Rd

�� kxk2 = 1
 

denotes the unit `2-sphere
in Rd.
Functions

For a given set K ⇢ Rd, we define the indicator function IK(x) to take the value
1 when x 2 K, and 0 otherwise. We have that �d denotes the d-dimensional
Lebesgue measure, and vold (K) to be the volume of the set K with respect to
�d. Additionally, for such a set K, we denote its interior by int (K), and its
centroid by centroid (K). Unless stated otherwise we will always work in the
metric space

�
Rd

, k·k2
�
.

4.2 Location estimation (known � regime)

Given our observed samples (Yi)
n

i=1 generated according to Definition 4.4,
we begin by investigating location estimation in the (easier) known scaling
regime. We sequentially introduce three natural location estimators for v.
These include the multivariate Pitman location estimator (bvpit), the sample

3We will also use boldface uppercase for random vectors. Their dimension will be made
clear in context.
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4. uniform location estimation on convex bodies

mean (v), and what we refer to as the marginal projection location estimator
(bvmarg). We review the basic statistical decision-theoretic properties of each
estimator in general settings. Furthermore, for each estimator we comment
on the statistical vs. computational optimality trade-off which describes the
practicability of each estimator. Ultimately we will see that there is a need
to develop a new location estimator that better balances this statistical vs.
computational trade-off in more general settings.

4.2.1 Parameter identifiability

Before discussing our first three location estimators, a fundamental question is
whether the underlying data generating process is identifiable for statistical
estimation purposes. This is indeed true and summarized in the following
proposition.

Proposition 4.7 (Parameter identifiability). The data generating process per
Definition 4.4, satisfies parameter identifiability for location parameter v, and
scale parameter �.

With Proposition 4.7, we are ready to now consider multivariate location
estimation in both known and unknown scaling regimes.

4.2.2 The critical set and its geometric properties

This intersection set arises repeatedly throughout this work, and we refer to it
henceforth as the critical set. We briefly note the key geometric properties of
the critical set in Proposition 4.8.

Proposition 4.8 (The critical set and its geometric properties). Let (Yi)
n

i=1 be
generated according to Definition 4.4. We define critical set to be

T
n

i=1 (Yi � �K),
for each n 2 N. Moreover, the critical set contains the true location vector
v almost surely for each n 2 N, and is thus non-empty. Furthermore it is a
compact convex set, and is thus closed and bounded.

We note that although K 2 Kd is known to the observer, the critical setT
n

i=1 (Yi � �K), in general will have a much more complicated form (and
representation) to K, due to its random intersection construction. We will
shortly see this more complex geometry, even for our simple nonagon example
given in Figure 4.1.1, as simulated in Figure 4.2.1.

4.2.3 Multivariate Pitman location estimator: bvpit

Location and scale estimation as pioneered by Pitman (Pitman, 1939b), was
developed in the case of univariate estimation. However the Pitman location
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4.2. Location estimation (known � regime)

estimator, which is the equivariant rate optimal estimator under the squared
loss, can be extended naturally to the multivariate estimation setting, which is
of direct interest to us. We first note the form of the general multivariate Pitman
location estimator in Theorem 4.9. The proof can be found in Ibragimov and
Has’minskĭı (1981, Lemma 2.1) and Bickel and Doksum (2016, Theorem 8.3.1).
In Section 4.C we also provide an alternative proof which is effectively a step-
by-step multivariate extension of the relevant univariate results of (Lehmann
and Casella, 1998, Chapter 3).

Theorem 4.9 (Multivariate Pitman location estimator). Consider the more
general location estimation problem, under the known scaling regime. That
is, let d � 1 be a fixed positive integer, and denote v 2 Rd to be the fixed but
unknown location parameter. We then consider n observations, (Yi)

n

i=1, where
each observation Yi 2 Rd is generated from the following model:

Yi

a.s.
= v +Xi (4.5)

s.t. (X1, . . . ,Xn) ⇠ f, (4.6)

where f is a valid joint probability density of (X1, . . . ,Xn). Then under square
loss risk, for this generating process, the multivariate mimimum risk equivariant
location estimator is the Pitman estimator, bvpit, which is defined as follows:

bvpit =

R
Rd uf (y1 � u, . . . ,yn�1 � u,yn � u) duR
Rd f (y1 � u, . . . ,yn�1 � u,yn � u) du

. (4.7)

Remark 4.10 (Location equivariant estimators). Consider the general loca-
tion estimation model described in Theorem 4.9. Then a location estimator
� :

N
n

i=1Rd ! Rd, for v, is said to be location equivariant (or invariant) if
�(X1 + v, . . . ,Xn + v) = �(X1, . . . ,Xn) + v, for each v 2 Rd.

Under square loss, the multivariate Pitman estimator is known to be
minimax optimal for location (Maruyama and Strawderman, 2021, Remark
3.1). Moreover of all location-equivariant estimators, the Pitman location
estimator has minimum mean squared error. It thus is referred to as the
minimum risk equivariant estimator (MRE) for the location parameter. Given
that the Pitman estimator is known to satisfy many favorable statistical decision-
theoretic properties a natural first step is to then directly apply Theorem 4.9 to
our multivariate uniform location estimation. The resulting form multivariate
uniform location Pitman estimator, bvpit, is shown in Corollary 4.11.

Corollary 4.11 (Multivariate uniform Pitman location estimator). Let (Yi)
n

i=1
be generated according to Definition 4.4, with � known to the observer. Then
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the Pitman estimator bvpit, of the location parameter v is the centroid of the
critical set, that is:

bvpit = centroid

 
n\

i=1

(Yi � �K)

!
. (4.8)

Remark 4.12. One can readily check that in the case where d = 1, the form of
bvpit given in (4.8), reduces to the univariate Pitman estimator, b✓pit, as described
in Section 4.1. A formal proof can be found in Section 4.C.4. We note that
we used bvpit to denote the general multivariate Pitman location estimator in
(4.7), and also for the special case for our multivariate uniform Pitman location
estimation setting as per (4.8). Henceforth bvpit will only refer to (4.8).

We see that Corollary 4.11 already reveals the interesting geometry of
location estimation even in the (easier) known scaling regime. Specifically, bvpit
in this setting amounts to computing the the centroid of the critical set, as
defined in Proposition 4.8.

As such it is not clear whether its centroid, bvpit, is computable apriori
over general classes of convex bodies K 2 Kd. However, there are at least two
restricted settings in which bvpit is easily computable. First, suppose K 2 Kd

is an axis-aligned hyperrectangle with centroid at the origin (as usual). The
resulting critical set in this case is always another axis-aligned hyperrectangle.
The computation of its centroid (by symmetry) is just the vertex centroid of
this axis-aligned hyperrectangle. Second, if K 2 K2 is a convex polygon then
the resulting critical set is another convex polygon in R2. In this special case,
the Pitman location estimator can be efficiently computed using using closed
form polygon centroid algorithms from computational geometry (Heckbert,
2013, Chapter I.1).

Unfortunately, computing the Pitman estimator over a broader class of
convex bodies Kd is challenging. This is so since even approximating the
centroid of convex bodies in higher dimensions, for even some special classes of
convex bodies, is a NP-hard problem as shown in Rademacher (2007). This
suggests that we need to consider alternative practically computable estimators
for the location in our setting that still enjoy statistical optimality similar to
the Pitman estimator, under square loss, but are computable in these more
general practical settings.

4.2.4 Sample mean as a location estimator: v

As noted previously, the mulitvariate Pitman estimator enjoys many favorable
statistical decision-theoretic properties, but it is not clear how to compute it
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4.2. Location estimation (known � regime)
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Figure 4.2.1: Simulated critical set (right), K ⇢ R2 (nonagon), v = (20, 3)
>, and

n = 10.

in more general settings for our purposes. A simple computable alternative to
consider for multivariate uniform location estimation is the sample mean, i.e.,
v :=

1
n

P
n

i=1Yi. It is clear that v is a consistent and unbiased estimator for v.
This is formally summarized in Proposition 4.13.

Proposition 4.13 (Sample mean is consistent and unbiased for location). Let
(Yi)

n

i=1 be generated according to Definition 4.4, with � known to the observer.
The sample mean v :=

1
n

P
n

i=1Yi is a consistent and unbiased estimator of the
location parameter v, regardless of the value of the true scale parameter �.

Since the sample mean is another location-equivariant estimator, we know
from the previous section that the Pitman estimator achieves a smaller mean
squared error (MSE). As such, with respect to the MSE, v is not statistically
optimal in a relative sense to bvpit. However, since the specific rate of convergence
of bvpit is not known, it is hard to gauge precisely how suboptimal v is relative to
bvpit. To better understand this relative suboptimality of v, we first show in our
setting v converges to v at a rate proportional to

q
d

n
, with high probability.

This is detailed in Proposition 4.14.

Proposition 4.14 (Sample mean is
q

d

n
-consistent). Let (Yi)

n

i=1 be generated
according to Definition 4.4, with � known to the observer. Then the sample
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4. uniform location estimation on convex bodies

mean estimator, i.e. v, satisfies kv � vk2  � diam (K)

q
d

�n
with probability

at least 1� �.

Remark 4.15 (Sample mean is lower bounded at n� 1
2 risk rate). It can be shown

in fact that the risk rate of the sample mean location estimator has a lower
bound at rate 1p

n
, suggesting that the upper bound risk rate in Proposition 4.14

can’t be improved further in sample complexity. This result can be established
by applying the Paley-Zygmund inequality coordinate-wise on the sample mean
location estimator. A more formal proof can be found in Section 4.C.8.

We will later show that the rate of convergence of the Pitman estimator (and
in fact any estimator lying in the critical set) to the true location parameter
v, is of the form C(d,K)

n
, with high probability. Here C(d,K) is some constant

that depends on the dimension d and on the known convex body K. This is
typically better than the C(d,K)p

n
rate achieved by the sample mean with the

dimension held fixed, per our setting. Compared to the multivariate Pitman
location estimator, it is clear that the sample mean is much easier to compute
across more general settings, even in an online manner. However the relative
statistical suboptimality compared to the Pitman estimator suggests that there
are likely location estimators that better balance the trade-off. We investigate
a another location estimation candidate in the next section.

4.2.5 Naive strategy - the marginal uniform projection estimator:

bvmarg

We have now considered both the multivariate Pitman estimator (bvpit) and
the sample mean (v) for location parameter estimation v. As discussed, they
each highlight various statistical vs. computability trade-offs. Such trade-offs
makes them impractical for location estimation purposes across a large class of
convex bodies K, and for arbitrary dimension d � 1. As noted in Section 4.2.3
the multivariate Pitman estimator is easy to compute where K 2 Kd is an
axis-aligned hyperrectangle. This motivates an alternative location estimation
strategy which may better balance our underlying optimality trade-offs, over
more general convex bodies K 2 Kd. Under our multivariate uniform generating
process, we formally describe such an estimator as follows:

Definition 4.16 (Marginal uniform projectionestimator). Let (Yi)
n

i=1 be
generated according to Definition 4.4, with � known to the observer. Suppose
we now fix any orthonormal basis (aj)

d

j=1 of Rd. Then the marginal projection
estimator for v, i.e., bvmarg, is constructed coordinate-wise as: [bvmarg]j :=
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4.2. Location estimation (known � regime)

fj

⇣
a>
j
Y1, . . . ,a>j Yn

⌘
, for each coordinate index j 2 [d]. Here fj : Rn ! R is

a measurable function of its inputs.

Remark 4.17. In Definition 4.16, it should be noted that each coordinate-wise
value of the estimator bvmarg, only uses information from the the projection of
the original data values along the given coordinate direction.

The key idea behind this estimation strategy is that given our multivariate
uniform observations, one can potentially better utilize marginal univariate
density information along pre-specified individual directions in Rd. The end
goal here is to try and better balance the previously mentioned statistical vs.
computational trade-off observed in the multivariate Pitman estimator and the
sample mean.

To understand why this estimation strategy may seem reasonable, let
(Yi)

n

i=1 be generated according to Definition 4.4, with � known to the ob-
server. Further we assume that Kd is an axis-aligned hyperrectangle4 with
centroid (K) = 0, per our usual setting. Given an observation Yi, we denote
its coordinate components as Yi := (Yi1, . . . , Yid)

>, for each i 2 [n]. We can
then proceed to exploit marginal information for location estimation purposes
as follows. Let us consider the orthonormal basis vectors aj := ej , where ej
is the j

th standard basis vector in Rd, for each j 2 [d]. Here we can simply
apply the uniform univariate Pitman location estimator along each individual
coordinate. We can then combine all d coordinate-wise Pitman estimators into
our single marginal projection estimator, for the hyperrectangle K, i.e., bvrect

marg.
More formally we define bvrect

marg as follows:

Example 4.18 (Marginal uniform hyperrectangle projection estimator). Let
(Yi)

n

i=1 be generated according to Definition 4.4, with � known to the observer.
Furthermore, let K 2 Kd be an axis-aligned hyperrectangle so that K :=Q

d

j=1 [���j ,��j ], where �j > 0, for each j 2 [d]. Then the marginal uniform
projection hyperrectangle estimator, bvrect

marg, is defined as follows:

bvrect
marg := (b⇡1, . . . , b⇡d)> (4.9)

where b⇡j :=
min {Y1j , . . . , Ynj}+max {Y1j , . . . , Ynj}

2
, for each j 2 [d]

4The hyperrectangle is assumed WLOG to be axis-aligned with respect to the standard
basis. If the hyperrectangle is not axis-aligned, one can rotate it (via change in basis) to be
axis-aligned, perform location estimation, and then rotate the estimator back to the original
basis. In short, this estimation strategy generalizes to all hyperrectangles in Rd.
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4. uniform location estimation on convex bodies

Remark 4.19. We note that bvrect
marg satisfies Definition 4.16, since ⇡j is a measur-

able function of the projected data for each j 2 [d]. Moreover, in the case d = 1,
this reduces to the univariate Pitman location estimator (by construction) as
described in Section 4.1. However, we do not claim that in the case d � 2 where
K 2 Kd is an axis-aligned hyperrectangle, that bvrect

marg and bvpit are equivalent.
We are simply trying to investigate whether the location estimator bvrect

marg also
has sharp convergence to the true location parameter v, i.e., at a n

�1 rate in
the multivariate setting. An simple illustrative example of bvrect

marg for K ⇢ R2,
is shown in Figure 4.2.2.

rect

marg

Figure 4.2.2: Example of bvrect
marg estimation, K ⇢ R2 (rectangle), and n = 4 samples.

Clearly, since the bvrect
marg applies the univariate uniform Pitman location

estimator along each coordinate (i.e., b⇡j), it is efficient to compute even in
online settings. But what about the rate of estimation in this specific setting?
This is summarized in Proposition 4.20.

Proposition 4.20 (Projection Estimator for hyperrectangles). Under the
setting of Example 4.18, let the marginal projection estimator, bvrect

marg, be defined

as per (4.9). Then bvrect
marg satisfies

��bvrect
marg � v

��
2


2�k�k2 log
⇣

2d
�

⌘

n
with probability

at least 1� �, where � := (�1, . . . ,�d)
>.

We see from Proposition 4.20 that in the case where K 2 Kd is an axis-
aligned hyperrectangle, bvrect

marg allows us to obtain such sharp n
�1 risk rates in

sample complexity, and also dimension dependence. The immediate follow up
question is whether we leverage this marginal uniform projection estimator
strategy for other convex bodies K 2 Kd and get similar risk rates? Unfortu-
nately, we show that this is not the case in general. We do this by showing
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4.2. Location estimation (known � regime)

that we can in fact lower bound the risk rate for this marginalized projection
estimation approach in the special case K = B

3
2(0, R), i.e., K is the closed

Euclidean ball of radius R centered at the origin in three dimensions. This
particular counterexample is formalized in Theorem 4.21.

Theorem 4.21 (Lower bound of K = B
3
2(0, R)). Let (Yi)

n

i=1 be generated
according to Definition 4.4. Furthermore, let d = 3, � = 1, and K = B

3
2(0, R) 2

K3. Suppose WLOG we are estimating the first coordinate of the location
parameter, v1. Let W denote the class of all such marginal projection estimators
for v1, as per Definition 4.16. Then there exists some C

0 2 (0, 1) such that the
following holds:

inf
ew2W

sup

v12R
P
⇣
| ew � v1| � (1� C

0
)n

� 3
4

⌘
� C

0 (4.10)

Theorem 4.21 demonstrates that in the case where K = B
3
2(0, R) 2 K3,

if the marginal projection information is used for a single coordinate, then
the location parameter coordinate along that projection can’t be estimated
at better than an n

� 3
4 rate. In turn, this implies that we certainly have a

worse than n
�1 rate across all coordinates in Euclidean norm. That is, the true

location parameter v cannot be estimated at a n
�1 in this specific setting for

any marginal projection estimator satisfying Definition 4.16. However we do
note that there may exist location estimators of v which better utilize marginal
projection information to get faster convergence rates than the estimators
described in Definition 4.16. Rather than pursue finding such estimators, we
propose an entirely different projection location estimator altogether which
better balances the statistical vs. computational optimality trade-offs discussed.

4.2.6 Our projection location estimator: bvprj

As discussed, our marginal uniform projection location estimator strategy seems
to not be promising in more general settings. Returning to the multivariate
uniform Pitman location estimator, we observe that it requires the computation
of the centroid of the critical set. Given the favorable statistical optimality
of the Pitman estimator, we observe that it relies on using all d coordinate-
wise information simultaneously (rather than marginally). This motivates an
alternative projection strategy to estimate the location parameter v. More
specifically we propose the following projection estimator, denoted by bvprj:

bvprj := ⇧
T

n

i=1(Yi��K)(v) := argmin

w2
T

n

i=1(Yi��K)
kv �wk2 (4.11)
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4. uniform location estimation on convex bodies

Geometrically, our proposed projection estimator bvprj simply takes the sam-
ple mean v (per Section 4.2.4) and projects it onto the critical set

T
n

i=1 (Yi � �K).
The motivation for projecting onto the critical set for bvprj, is justified by its
core geometric properties as noted in Proposition 4.8. More specifically, since
the critical set is a non-empty closed convex set which contains v almost surely,
it means that our projection estimator bvprj exists and is unique, i.e., returns a
singleton. In this sense bvprj is well-defined. We then have that bvprj is always
at least as accurate as the sample mean (v) for location estimation. This
means that the projection operation moves the sample mean closer to all points
in the critical set, and hence closer to v. Of course, if v already lies in the
critical set, then v will be returned. This all follows from basic properties of
the Euclidean projection on (non-empty) closed convex sets and is formalized
in Proposition 4.22.

Proposition 4.22 (Projection Estimator Motivation). Let (Yi)
n

i=1 be generated
according to Definition 4.4, with � known to the observer. Let v :=

1
n

P
n

i=1Yi

denote the sample mean, and bvprj = ⇧T
n

i=1(Yi��K)(v) denote the projection
location estimator. Then for any z 2

T
n

i=1 (Yi � �K) we have:

kv � zk2 � kbvprj � zk2 a.s. (4.12)

Remark 4.23. Importantly, since v 2
T

n

i=1 (Yi � �K) a.s., we set z = v in
(4.12). This shows that bvprj will have the same or smaller risk than v under
square loss a.s.

Recall from Section 4.2.3 that in this known � regime the Pitman estimator
bvpit requires the computation of the centroid of the critical set

T
n

i=1(Yi� �K),
which is a hard task in general. On the other hand the projection estimator,
bvprj, simply requires us to project onto the critical set. We will see that
relaxing from centroid estimation to projection onto the critical set is much
easier computationally, for a larger class of convex bodies K 2 Kd. For instance
it reduces to a quadratic program when K is a convex polytope. Moreover,
from a statistical perspective, we will later show that any estimator lying in
the critical set (including bvpit and bvprj) converges in probability to v at a n

�1

rate. Before discussing computational guarantees and statistical optimality of
any estimators lying in the critical set, we first discuss our proposed estimators
in the unknown � regime.

4.3 Location-scale estimation (unknown � regime)

We now turn our attention to the more challenging multivariate uniform
location-scale estimation setting. We again observe (Yi)

n

i=1 to be generated
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4.3. Location-scale estimation (unknown � regime)

according to Definition 4.4, however this time in the unknown � regime. Here
both parameters v 2 Rd, and � 2 R>0 are unknown to the observer and need
to be estimated. We propose to estimate them both simultaneously using their
respective MLEs. In our case the likelihood function, for n observed samples
(Yi)

n

i=1, is given by:

L (v,� | Y1, . . . ,Yn) =

Q
n

i=1 I(Yi � v 2 �K)

(vold (�K))
n

=

Q
n

i=1 I(Yi � v 2 �K)

(�d vold (K))
n (4.13)

=
I\n

i=1Yi��K(v)

�nd (vold (K))
n (4.14)

Unfortunately in dimensions two and higher we note the n observed samples
(Yi)

n

i=1 are no longer totally ordered, unlike the univariate case. As such
the typical univariate approach of computing the MLE using order statistics
of the observations via indicator functions is not applicable here. This is
further complicated by the fact that � is now unknown. Before describing
our MLEs for v and � in this general setting, we first introduce and briefly
review the Minkowski gauge functional. The gauge functional is a central
object in formulating our MLEs. We first formalize it in Definition 4.24 and
then provide a brief summary of its essential properties as relevant for our
estimation purposes.

Definition 4.24 (Minkowski gauge functional on convex bodies). Let K 2 Kd,
then the Minkowski gauge functional of the set K, ⇢K : Rd ! [0,1), is defined
as follows:

⇢K(x) := inf {t > 0 |x 2 tK}

Since K 2 Kd is a convex body, then by definition K ⇢ Rd is a convex,
compact set with a non-empty interior. Specifically we have that centroid (K) =

0 2 int (K), which means that K is necessarily absorbing i.e.
S

t>0 tK = Rd.
It follows that the Minkowski functional is a positive homogeneous and sub-
additive functional, and hence also a convex functional. For a proof of these
facts and more details on the Minkowski gauge functional, see (Lindahl, 2016,
Section 6.10). We also note that Minkowski gauge functionals are Lipschitz
(Mordukhovich and Nam, 2014, Proposition 3.32).
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4. uniform location estimation on convex bodies

Armed with this definition of the Minkowski gauge functional and its key
properties we now make the following observation of the critical set.

x 2
n\

i=1

(Yi � �K) () x 2 Yi � �K, 8 i 2 [n]

() Yi � x 2 �K, 8 i 2 [n]

() ⇢K(Yi � x)  �, 8 i 2 [n]

() max
i2[n]

⇢K(Yi � x)  �. (4.15)

From (4.15) we observe that precise equivalence of containment of a vector,
x in the critical set and the maximum of n, Yi-translated Minkowski gauge
functional, which as noted is a convex function. Comparing this equivalence to
the form of our likelihood in (4.14) we observe that the location-scale parameter
MLEs, bvMLE and b�MLE, are the solution to the following unconstrained convex
optimization problem:

inf
⌧2Rd

max
i2[n]

⇢K(Yi � ⌧ ). (4.16)

We will in fact show that the infimum in the convex problem in (4.16) is
in fact a minimum. Moreover our proposed MLEs for v, and � are then given by
bvMLE := argmin⌧2Rd maxi2[n] ⇢K(Yi�⌧ ), and b�MLE := min⌧2Rd maxi2[n] ⇢K(Yi�
⌧ ) respectively.

Theorem 4.25 (Minimum is attained in the MLEs). The MLEs for v and � as
given by bvMLE 2 argmin⌧2Rd maxi2[n] ⇢K(Yi�⌧ ), and b�MLE := min⌧2Rd maxi2[n] ⇢K(Yi�
⌧ ), respectively, both exist.

Remark 4.26. It is interesting to note that the gauge functional reformulation
of our multivariate uniform location-scale MLEs has a very similar form to the
Chebyshev or `1 estimator used in regression. More specifically, the ‘min-max’
form of the estimator we propose here for the location-scale MLE is comparable
to (Yi and Neykov, 2021, Equation 2.1) which is the Chebyshev estimator
applied to multivariate linear regression under univariate uniform noise.

In fact since the minimum is attained for the MLE, we have the following
key result which guarantees that the location parameter MLE (bvMLE), in the
unknown scaling regime lies in the critical set.
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Proposition 4.27 (Location MLE is contained in the critical set). Since
0 < b�MLE  � and 0 2 int (K) (per Remark 4.6), we have that

n\

i=1

(Yi � b�MLEK) ✓
n\

i=1

(Yi � �K)

The significance of this result is that bvMLE, much like bvpit, and bvprj all lie
in the critical set. We will shortly provide upper bounds for risk rates hold for
any estimator that lies in the critical set

T
n

i=1 (Yi � �K). We will see that all
of these estimators then are consistent for v at a rate of C(d,K)

n
.

From a computational perspective we will also shortly see, that we propose
a subgradient descent algorithm to estimate the above MLEs for general
convex bodies, provided that we have a supporting hyperplane oracle for the
underlying convex body K 2 Kd and we can evaluate its Minkowski gauge
functional efficiently. Moreover, these proposed algorithms will come with
convergence guarantees based on the subgradient method.

4.4 Upper and lower bounds

4.4.1 Upper bounds warm-up: convex polytopes in Rd

We seek a high probability upper bound for the mean squared risk error for
our projection estimator, bvprj. We will in fact derive such bounds for any
estimator lying in the critical set, i.e. bvcri 2

T
n

i=1 (Yi � �K) a.s.. Before
describing the result and proof sketch thereof where K 2 Kd is a general
convex body, we first demonstrate it in the special case where K 2 Kd is a
convex polytope, with m facets5. Per our setting in Definition 4.4, we have
that centroid (K) = 0 2 int (K). This convex polytope proof construction will
more clearly illustrate the geometric intuition behind the proof technique used
in the general case when K ⇢ Kd is a convex body. The main result for the
high probability upper bound for the rate of convergence of our estimator is
provided in Theorem 4.28.

Theorem 4.28 (Consistency of location estimators in the critical set, K 2 Kd

polytope.). Let (Yi)
n

i=1 be generated according to Definition 4.4. Further
assume that K 2 Kd is a convex polytope with m facets. Let bvcri denote any
location estimator lying in the critical set, i.e. bvcri 2

T
n

i=1 (Yi � �K) a.s. We
then have that bvcri satisfies kbvcri � vk2  �↵n(diam (K)), with probability at

least 1� � 2 (0, 1), if ↵n =
log

⇣
m

�

⌘

cminn
. Here cmin  1

m
, is a constant that depends

on the convex body K.
5The formal definition of a convex polytope facet can be found in Section 4.E.1.
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4. uniform location estimation on convex bodies

We now give a brief sketch of the proof technique in the case where K 2 Kd

is a convex polytope. The basic approach can be broken down intuitively into
three key steps as follows:

Step I: Bound the estimation error by the diameter of the critical

set.

First we observe by definition of bvcri and using Proposition 4.8, both bvcri,v 2T
n

i=1 (Yi � �K) a.s.. We immediately obtain:

kbvcri � vk2  sup

(
kw � zk2

�����w, z 2
n\

i=1

(Yi � �K)

)
=: diam

 
n\

i=1

(Yi � �K)

!
a.s.

(4.17)
The RHS in (4.17) is finite since the critical polytope is compact per Proposi-
tion 4.8, again from Proposition 4.8. Thus we can meaningfully try and bound
this diameter with high probability.

Step II: Construct an enveloping polytope of the critical set.

In order to upper bound diam (
T

n

i=1 (Yi � �K)), we in fact show that the
critical polytope,

T
n

i=1 (Yi � �K), can be nested in another enveloping polytope,
i.e., �↵n(�K)+v, with high probability. Showing that this enveloping polytope
can be constructed from n samples with high probability is the most challenging
part of the proof. In brief, we first consider a sequence of dilations of the
origin centered polytope, i.e., P := ((1� ↵n)�K)

1
n=1. Here (↵n)

1
n=1 ! 0 is a

non-negative sequence, where ↵n 2 (0, 1), for each n 2 N, to be determined.
Each such dilation induces a nested polytope (1�↵n)�K ✓ �K, which in turn
induces a boundary polytope shell, i.e. S := �K \ (1� ↵n)�K. This boundary
shell can be decomposed into a union of m sets, one for each facet. We can
in turn show that such an enveloping enveloping polytope can be constructed,
with high probability, if we appropriately select (↵n)

1
n=1 so that we can sample

at least one point from each of the m boundary facet shells. In Section 4.E, we
provide the details of how to select (↵n)

1
n=1, to guarantee this high probability

construction.

Step III: Bound the estimation error by the diameter of the envelop-

ing polytope.

Our bounds depend on the diameters of convex polytopes. As such, using the
monotonicity, translation invariance, and scaling properties of the `2-diameter
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of compact sets in Rd we obtain:

kbvcri � vk2  diam

 
n\

i=1

(Yi � �K)

!
(using Step I.)

 diam (�↵n(�K) + v) (using Step II.)
= ↵n� diam (K) ,

with probability at least 1 � � 2 (0, 1), if ↵n =
1

cminn

⇣
log

h
m

�

i⌘
, as required.

Note that cmin  1
m

, is a constant that depends on the convex body K. The
full details of the proof are found in Section 4.E.

Figure 4.4.1: (Left) Triangulation of P = �K. (Right) Decomposition of pyramid
PFk,0

4.4.2 Upper bounds: general convex bodies in Rd

We now generalize our proof from convex polytopes to the case where the set
K 2 Kd is a general convex body (per Definition 4.41) with centroid (K) = 0,
as usual. The main result is summarized in Theorem 4.29.

Theorem 4.29 (Consistency of location estimators in the critical set, K 2 Kd.).
Let (Yi)

n

i=1 be generated according to Definition 4.4. Let bvcri denote any
location estimator lying in the critical set, i.e. bvcri 2

T
n

i=1 (Yi � �K) a.s..
We then have that bvcri satisfies kbvcri � vk2 

�C1n
n

, with probability at least
1 � 2 exp(�C2n/ polylogd(n)), where C1 := C1(d,K) and C2 := C2(d,K)

are constants which depend on the dimension d and the convex body K, n is
any slowly diverging sequence with n, and polylogd(n) is a poly-logarithmic
factor of n which also depends on the dimension d.
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4. uniform location estimation on convex bodies

Remark 4.30. From Proposition 4.27 we have that bvMLE 2
T

n

i=1 (Yi � �K).
As such Theorem 4.29 applies to bvMLE, and ensures the same rate of estimation
under this unknown scaling location estimation setting.

We now give a brief sketch of the proof technique in the case where K 2 Kd

is a general convex body. The basic approach can be broken down intuitively
into four key steps as follows:

Step I: Bound the estimation error by the diameter of the critical

set.

Similar to Step I of the polytope proof, we note that per (4.17) that once again
we have the basic inequality kbvcri � vk2  diam (

T
n

i=1 (Yi � �K)) a.s.. How-
ever the critical set here is no longer a polytope, but likely a more complicated,
i.e., non-polytopal convex set depending on the underlying convex body K.
Our goal still remains to upper bound the diameter of the critical set in this
more general convex body setting.

Step II: Construct an enveloping convex polytope via supporting

hyperplanes.

Our proof differs here from that used in the case where K is a convex polytope,
since our critical set may not be a polytope, i.e. may not have explicit facets.
However, we retain the spirit of our previous proof by first enveloping the
entire convex body with a polytope formed by some of its specific supporting
hyperplanes. To ensure that such a supporting hyperplane polytope can be
constructed with high probability, we again take an ↵n shell of the convex
body, and show that we can sufficiently sample points along the boundary shell.
Moreover we need to ensure that for each such point by taking the ray from the
origin passing through the point, to the boundary of the convex body K. Then
one can clearly envelope the convex body K with finitely many supporting
hyperplanes resulting in a convex polyhedron. However we require this to be
bounded, i.e. a polytope. Indeed by choosing ↵n to be of the order of �C1n

n
,

where n is a slowly diverging sequence, such a construction is guaranteed with
high probability.

Step III: Construct an enveloping polytope of the critical set.

Now that we have enveloped our convex body �K entirely, we can indeed apply
our reflection trick so that diam (

T
n

i=1 (Yi � �K)) ✓ �↵nP + v, as with our
convex polytope. Note that here, �K ✓ P is our enveloping polytope for the
convex body. In essence we have enveloped our (possibly) non-polytopal critical
set, with a convex polytope, with high probability.

Step IV: Bound the estimation error by the diameter of the envelop-
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4.4. Upper and lower bounds

ing polytope.

Finally, we can apply the identical approach from Step III in the convex
polytope proof to bound our estimation error, over general convex bodies, as
required. The full details of the proof are found in Section 4.E.

Additionally, although � is treated as a nuisance parameter, we can show
that estimation error using b�MLE, can also be done at an n

�1 rate. This is
formally described in Proposition 4.31.

Proposition 4.31 (Consistency of the scale parameter MLE, K 2 Kd.).
Assume that the same conditions as Theorem 4.29 hold, and let G > 0 de-
note the Lipschitz constant of the Minkowski gauge functional ⇢K(x). We
then have that |b�MLE � �|  �n

n
(GC1 + 1), with probability at least 1 �

2 exp(�C2n/ polylogd(n)), where C1, C2 are as defined in Theorem 4.29.

4.4.3 Lower bounds

We now turn our attention to proving minimax lower bounds for our location
estimator. The main result is summarized in Theorem 4.32.

Theorem 4.32 (Minimax lower bound for location estimation). Let (Yi)
n

i=1
be generated according to Definition 4.4, with � known to the observer. Let bv,
be any estimator (measurable function) for the location parameter v. We then
have that the following holds:

inf
bv

sup

v2Rd

P
 
kbv � vk2 � sup

z2Sd�1

� vold (K)

n vold�1 (K | z?)

!
� 1

2
. (4.18)

Here K | z? is the image of the orthogonal projection of K onto the orthogonal
complement of z. Note that z? :=

�
x 2 Rd

�� hx, zi = 0
 
, i.e., the hyperplane

through 0 2 Rd, with z 2 Rd as a normal vector.

From Theorem 4.32 we note that our lower bounds are of the form c(d,K)
n

,
and thus match the upper bounds in sample complexity, in our fixed dimension
setting. The bounds also capture similar dependence on � and K, which are
both fixed constants in our setting. It is worthwhile here giving a sketch of the
proof techniques used in constructing our lower bounds. We note from the outset
that since we are working over a compact support the KL-divergence between
to perturbed uniform densities over compact support is infinite. Thus many
standard techniques, e.g., Fano’s method (Yu, 1997) become challenging to
naively apply in this setting. In short, we need to better exploit the underlying
convex support structure of the multivariate uniform distributions. This proof
sketch can be described as follows:
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4. uniform location estimation on convex bodies

Step I: Set up the perturbed multivariate uniform distributions.

First we note that K 2 Kd is fixed with centroid (K) = 0. Since we are in
the known scaling regime, we will assume WLOG that � = 1. Let Kz :=

K + z 2 Kd denote a translation of it by some perturbation z 2 Rd. Further
let X1 ⇠ Unif[K] and X2 ⇠ Unif[Kz]. As we will see, the minimax rate will be
captured by the magnitude of this perturbation, i.e., kzk2. The perturbation z,
will be determined accordingly later.
Step II: Compute exact TV distance between the two perturbed

distributions.

Since that we are working with multivariate uniform distributions, the total
variation between X1, X2 can in fact be computed in closed form. This circum-
vents the previously noted issues with the KL-divergence related approaches.
More specifically we have

d
TV

(X1, X2) =
1

2

✓
vold (K4Kz)

vold (K)

◆
=

vold (K \Kz)

vold (K)
(4.19)

Geometrically, it is a scaling of the symmetric set difference of K,K + z. This
is not so surprising, since the multivariate uniform distributions are in this case
entirely defined by their compact convex supporting sets.
Step III: Upper bound the TV distance further using the ‘sweep set’.

This set difference of (4.19) can be bounded further by considering the sweep set
of the convex body K, by perturbation z, i.e., K+[0, 1]z := {k+ �z |� 2 [0, 1],k 2 K}.
This is shown visually in Section 4.4.3. One can show using geometric proper-
ties of the sweep set (Schymura, 2014; Gardner, 2006) that the required total
variation distance can be upper bounded as:

d
TV

(X1, X2) =
vold (K \Kz)

vold (K)
 vold (K4K + [0, 1]z)

2 vold (K)
=
kzk2 vold�1

�
K
�� z?

�

2 vold (K)
,

(4.20)
The RHS now ensures that d

TV
(X1, X2) can be bounded by controlling the

norm of the perturbation z, i.e., kzk2.
Step IV: Apply Le Cam’s Lemma to derive the lower bound.

The minimax lower bound can then be constructed with an application of Le
Cam’s lemma Yu (1997, Lemma 1) with n vectors each sampled uniformly
from K, and K + z. Using the subadditivity property of the total variation
distance applied to the derived upper bound, Then by choosing z such that
kzk2 =

� vold (K)

n vold�1 (K | z?) implies that we lower bound our minimax risk away
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from 0. Finally, taking the supremum over all possible directions for our
chosen perturbation vector, completes the proof. Full details are provided in
Section 4.E.4.

Figure 4.4.2: An illustration of the sweep set (shaded grey) of the convex body K by
the vector t

Remark 4.33. When we have more knowledge of K 2 Kd, we can further
refine the lower bound in Theorem 4.32. Observe the following formulas as per
Koldobsky et al. (2016, Section 2):

vold�1

⇣
K

��� z?
⌘
=

1

2

Z

Sd�1
|hx, zi| dSK , (4.21)

vold (K) =
1

d

Z

Sd�1
hK dSK , (4.22)

where z is a unit vector, hK : Rd ! (�1,1] with hK(x) := supy2Khx,yi is
the support function of K, and SK is its surface measure. When K 2 Kd is
symmetric, i.e., K = �K, one can pick z0 to be the point on the boundary
farthest from 0 2 Rd, so that kz0k2 =

diam(K)
2 . Taking z :=

z0

kz0k2
gives

|hx, zi|  hK(x)
kz0k2

, and hence

vold�1

�
K
�� z?

�

vold (K)
 d

diam (K)
(4.23)

On the other hand for a general set K by the paper above, we know there
exists a direction z such that c vold (K)

(d�1)/d
p
d � vold�1

�
K
�� z?

�
.
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4.5 Algorithmic Implementation

In this section, we review efficient algorithms with provable guarantees to
compute our proposed estimators in practical settings. We consider both
location-scale regimes i.e. where v is unknown with known scale parameter �.
And the more general regime where both v and � are unknown. Unlike previous
sections of our paper, we begin in Section 4.5.3 by first showing algorithmic
approach to the unknown scaling regime using the subgradient method. We then
demonstrate in Section 4.5.2 how we can utilize the constrained subgradient
method to compute the estimator in the known � setting.

4.5.1 Subgradients of the Minkowski gauge functional

As noted, in developing practical algorithms for estimating v and � in we will
primarily use variations of the subgradient method from convex optimization.
In particular, we need a means of computing subgradients of the Minkowski
gauge functional, ⇢K(x), as defined in Definition 4.24. Here, we collect some
useful results on the Minkowski gauge functional, which will ensure that our
proposed algorithms will have precise convergence guarantees. As noted in
Section 4.3, ⇢K(x) is a convex and Lipschitz functional on Rd. This gives

Lemma 4.34 (Bounded subgradient of ⇢K(x)). Let G > 0 be the Lipschitz con-
stant for the Minkowski gauge functional, ⇢K(x), as defined in Definition 4.24.
Then for any w 2 Rd, and for any z 2 @ (⇢K(w)), we have kzk2  G.

We also note the well known fact that since the pointwise maximum of
a finite set of convex functions is convex (see Mordukhovich and Nam (2014,
Proposition 1.38(ii)) for a proof). Moreover, the pointwise maximum of a finite
set of Lipschitz functions is also Lipschitz (see Lemma 4.61 in Section 4.A.3 for
a proof). It follows that maxi2[n] ⇢K(Yi � ⌧ ) is convex and Lipschitz. As such
a natural algorithm would be to use subgradient method. We first show how
to construct subgradients of ⇢K(x), in the case where we have knowledge of
supporting hyperplanes to the convex body K 2 Kd at any boundary point of
K.

Proposition 4.35 (Subgradient of ⇢K(x)). Let K 2 Kd with 0 2 int (K). Let
⇢K(x) be it is Minkowski gauge functional, for all x 2 Rd. Further, let x0 be
the vector that is parallel to x and lies on the boundary of K, and let x0⇤ be
any supporting hyperplane through x0. Then x0⇤

x0⇤>x0 is a subgradient at x0.

Next one needs to realize that a subgradient of a maximum of a finite set of
convex functions is a subgradient of the convex function which achieves the
maximum. This shows that if one can evaluate the Minkowski gauge functional
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4.5. Algorithmic Implementation

efficiently one can find the max, and then one needs to find the supporting
hyperplane at the max as described above.

4.5.2 Algorithmic implementation (v unknown, � known)

Recall from (4.11), that in the case where � is known our estimator for the
location parameter v 2 Rd is given by:

bvprj := ⇧
T

n

i=1(Yi��K)(v) (4.24)

We then observe that this problem is finding the projection onto the (non-
empty) intersection of a finite number of closed convex sets from v. Algorithms
which are known to provably converge in such cases are given by the alternating
projection based methods as developed in von Neumann (1950); Boyle and
Dykstra (1986). However since we are working with an intersection of arbitrary
convex bodies K, the convergence rates to the optimal solution are not directly
available for this method. For example, the such convergence rates are typically
known only for special non-compact closed convex sets such as subspaces as
per Deutsch (1985). Moreover, such algorithms require knowledge of how to
(Euclidean) project onto the specific convex body K, which can be a non-trivial
exercise in itself, depending on its geometric structure. As such for practical
purposes, we will utilize subgradient methods to find an efficient algorithm
with not only convergence guarantees on the optimal value, but also on the
rate of convergence.

In this known � regime, instead of projecting onto the intersection of the
convex bodies as per (4.24) it may be easier instead to solve the following
constrained convex optimization problem for ⌧

min kv � ⌧k2 (4.25)
s.t. max

i2[n]
⇢K(Yi � ⌧ )  �. (4.26)

This constrained convex optimization problem is equivalent to the original
problem i.e. an `2-projection onto the intersection of the convex bodies. To see
this equivalence formally, we first observe that the `2-projection in (4.24) is a
unique vector in the critical set, which minimizes the distance to the sample
mean. This requirement is equivalently captured in (4.25). We further observe
that per (4.15) we have the equivalence:

⌧ 2
n\

i=1

(Yi � �K) () max
i2[n]

⇢K(Yi � ⌧ )  �. (4.27)
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4. uniform location estimation on convex bodies

Then using (4.27) shows the equivalence of the original projection onto the
critical set problem in (4.24) to the constrained optimization problem as defined
in (4.25) and (4.26). In summary, we have shifted our focus from the original
estimation problem in (4.24), to solving the equivalent constrained convex
optimization problem as defined by both (4.25) and (4.26).

For reasons which will be made clear later, we instead recommend solving
the slightly augmented constrained convex optimization problem

min kv � ⌧k2 (4.28)
s.t. max

i2[n]
⇢K(Yi � ⌧ )  � (1 + 1/n) . (4.29)

By directly comparing (4.26) to (4.29), we see that the solution to (4.28) and
(4.29) is the same as that obtained by projecting v onto the larger (dilated)
set � (1 + 1/n)K, rather than projecting onto �K. In other words, this new
problem is an augmented version of Equation (4.24) in this precise sense. Since
� (1 + 1/n)K is again a convex body, the projection has a unique solution.
Let ⌧ ? denote the unique optimal solution to the augmented convex program
specified in (4.28) and (4.29). The main difference is Since � < � (1 + 1/n),
we then have using Proposition 4.27 the following nested relationship:

n\

i=1

(Yi � �K) ⇢
n\

i=1

(Yi � � (1 + 1/n)K) , (4.30)

and so v 2
T

n

i=1 (Yi � � (1 + 1/n)K). Then letting y1 = Y1, it follows that:

ky1 � ⌧ ?k2  � (1 + 1/n) diam (K) (4.31)
ky1 � vk2  � (1 + 1/n) diam (K) . (4.32)

Then let R := � (1 + 1/n) diam (K) > 0, from which it follows that ky1 � vk2 
� diam (K) < R. Since maxi2[n] ⇢K(Yi � ⌧ ) is convex and Lipschitz, we then
can appeal to the constrained subgradient method per Boyd and Park (2014,
Section 7) to solve this convex optimization problem. This is again applicable
when one has a supporting hyperplane oracle of K and one can evaluate its
Minkowski gauge functional efficiently. Moreover, in order for the constrained
subgradient method to converge, we require that Slater’s condition holds, i.e.,
the problem is strictly feasible. In our case, we this means that there exists
some point xsf 2 Rd, with maxi2[n] ⇢K(Yi�xsf

) < � (1 + 1/n). We also require
diminishing nonsummable step sizes per Boyd and Park (2014, Section 2.2),
i.e., step-sizes tk chosen to satisfy

tk > 0, lim
k!1

tk = 0,

1X

k=1

tk =1, (4.33)
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for each iteration index k 2 N. The formal constrained subgradient method as
required for our setup is formalized in Algorithm 4.1, by setting " > 0, x(0) to
Y1, and with tk chosen per (4.33).

Algorithm 4.1 Subgradient Descent (v unknown, � known)

1: procedure ConstrainedSubgradientDescentGauge(
�
x(0)

, (tk)
1
k=1

�
)

2: g(0)  x0
0
⇤

x0⇤
0

>x0
0

, x(0)
best  x(0)

3: for k = 1, . . . , L do

4: g(k�1) 2

8
><

>:

@
�
kv � x(k�1)k2

�
, if maxi ⇢K(Yi � x(k�1)

)  �,
@
�
⇢K(Yi⇤ � x(k�1)

)
�

for i
⇤
= argmaxi2[n] ⇢K(Yi � x(k�1)

),

, if maxi2[n] ⇢K(Yi � x(k�1)
) > �

5: x(k)  x(k�1) � tk · g(k�1)

6: x(k)
best  argmin{kv � x(k�1)

best k2, kv � x(k)k2}
7: return x(L)

best

Proposition 4.36 (Convergence of subgradient method). Suppose that there
exist constants R,G > 0 with

��x(0) � x?
��
2
 R,

��x(0) � v
��
2
 R, and��g(k)

��
2
 G for all k. Where x? is the unique optimal solution, then running

Algorithm 4.1 ensures that

kv � x(L)
bestk2 � kv � x?k2 

R
2
+G

2PL

k=1 t
2
k

2
P

L

k=1 tk

(4.34)

Remark 4.37 (Application to Polytopes). We note that the subgradient method
described here readily applies to the case where K is a convex polytope. In
particular if [A | b] is the halfspace representation of K, then the supporting
hyperplane at any given boundary point can computed directly from the
supporting hyperplane on which it lies. The resulting subgradient can be
readily computed as described using this supporting hyperplane information,
as previously described. If the point lies on an edge or vertex of a polytope
then, by definition it lies in the intersection of two or more halfspaces. This is
not an issue, since any one of these halfspaces can be chosen at random in such
cases to derive the subgradient as described. However, since polytopes have
more geometric structure, we provide a more simplified algorithmic approach in
this case (under both scaling regimes) using linear and quadratic programming.
These details are provided in Section 4.5.5.
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4.5.3 Algorithmic Implementation (v unknown, � unknown)

In this case where � is unknown our estimator for the location parameter
v 2 Rd is given by the MLE per Theorem 4.25 as the solution ⌧ to the following
unconstrained optimization

argmin

⌧2Rd

max
i2[n]

⇢K(Yi � ⌧ ). (4.35)

Since we have established that maxi2[n] ⇢K(Yi � ⌧ ) is convex and Lipschitz,
(4.35) is again a convex optimization problem. However, since � is unknown, we
no longer have it as a constraint as in Section 4.5.2. This time, we can directly
appeal to the regular (i.e., unconstrained) subgradient method to compute
bvMLE in our setting. This is formalized in Algorithm 4.2, for " > 0, and setting
x(0) to Y1.

Algorithm 4.2 Subgradient Method Gauge Unconstrained (v unknown, �
unknown)
1: procedure ConstrainedSubgradientDescent-

Gauge(
�
",x(0)

, (tk)
1
k=1

�
)

2: g(0)  @
�
⇢K(Yi � x(0)

)
�
, x(0)

best  x(0)

3: for k = 1, . . . , L do

4: g(k�1) 2 @
�
⇢K(Yi � x(k�1)

)
�

5: x(k)  x(k�1) � tk · g(k�1)

6: x(k)
best  argmin{maxi2[n] ⇢K(Yi � x(k�1)

best ),maxi2[n] ⇢K(Yi � x(k)
)}

7: return x(L)
best

Importantly, a similar convergence guarantee as per Proposition 4.36, holds
in this setting and summarized in Proposition 4.38.

Proposition 4.38 (Convergence of subgradient method). Suppose that there
exist constants R,G > 0 with

��x(0) � x?
��
2
 R,

��g(k)
��
2
 G for all k. Where

x? is the unique optimal solution, then running Algorithm 4.2 ensures that

max
i2[n]

⇢K(Yi � x(L)
best)�max

i2[n]
⇢K(Yi � x?) 

R
2
+G

2PL

k=1 t
2
k

2
P

L

k=1 tk

(4.36)

4.5.4 Accounting for "-suboptimality of the subgradient method

With the subgradient methods, as discussed in the previous sections, you can
only get to within " of the true minimum value. Here " is the RHS of (4.36).
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This in turn means that in theory our estimated e� := maxi2[n] ⇢K(Yi � x(L)
best)

can either be 0 < b�MLE  e�  � or be bigger than the true scale parameter
� i.e. 0 < b�MLE  �  e�. However, the latter is not a concern6. This is
formalized in Theorem 4.39.

Theorem 4.39. If you run the subgradient descent in Algorithm 4.2, such that
the RHS in (4.36) is at most C

n
for some sufficiently small C > 0, then

kx(L)
best � vk2 .

1

n
, (4.37)

with high probability (say .99).

Remark 4.40. An analagous theorem to Theorem 4.39 applies to Algorithm 4.1,
where � is known.

4.5.5 Estimating location-scale parameters of convex polytopes

As noted in Remark 4.37, if K 2 Kd is a convex polytope, then location
estimation subgradient method algorithms described in Sections 4.5.3 and 4.5.2
still apply, under both known and unknown scaling regimes. However, when
K 2 Kd is a convex polytope, we can more efficiently estimate the location
parameter v, under both scaling regimes. We can reduce such computations
to linear and quadratic programs, making it particularly useful in practical
situations.

To that end, let K := [A | b] be the H-representation of the given polytope
K. That is K is uniquely defined (up to ordering) by the set of m coordinate-
wise inequalities (i.e., halfspaces) Ax  b, for each x 2 Rd. Here A 2 Rm⇥d

and b 2 Rm are both known. We then have that �K = [A | �b]. Since our
observations are generated as Yi

a.s.
= v + �Xi, for each i 2 [n], we have the

equivalent m coordinate-wise inequalities

A(v + �Xi)  Av + �b () AYi � �b  Av. (4.38)

To simplify notation in what follows, we define the matrices M,B 2 Rm⇥n as

M :=

2

4
" " "

AY1 · · · AYi · · · AYn

# # #

3

5 , and B :=

2

4
" " "
b · · · b · · · b
# # #

3

5 .

(4.39)
6We note that � is always fixed and positive, as per our assumed multivariate uniform

location-scale generating process in Definition 4.4
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Then for each coordinate k 2 [m], we then have the equivalent constraints:

max
i2[n]

[M� �B]
ki
 [Av]

k
() max

i2[n]
[M]

ki
 [Av + �b]

k
(4.40)

where [M� �B]
ki

denotes the entry in row k, and column i, of M��B 2 Rm⇥n.
Note that the maximum in (4.40) are always taken in a row-wise manner.
Furthermore, the critical polytope here can then be represented as:

n\

i=1

(Yi � �K) =

⇢
⌧ 2 Rd

����max
i2[n]

[M]
ki
, for each k 2 [m]  [A⌧ + �b]

k

�

(4.41)
With this set up, we can now address the estimation of location-scale parameters
under this polytope setting under both scaling regimes.
Known � regime (via Quadratic Programming):

In this case we can solve the following quadratic program (QP) for ⌧ , to
estimate bvprj:

min kv � ⌧k22 (4.42)
s.t. max

i2[n]
[M]

ki
 [A⌧ + �b]

k
. (4.43)

Note that the feasible points from (4.43) forms critical set as per (4.41).
Unknown � regime (via Linear Programming):

In this case we can solve the following linear program (LP) for ⌧ , and �, to
compute the estimates bvMLE, and b�MLE, respectively.

min � (4.44)
s.t. max

i2[n]
[M]

ki
 [A⌧ + �b]

k
(4.45)

and � � 0. (4.46)

4.6 Simulations

We provide simulations7 showing the efficiency of our estimator in artificial
settings on various convex bodies, and also in an applied setting motivated
by measurement error. Our simulations are done in the case where d = 2 in
the case of a convex nonagon (9-sided regular polygon). The reason for this
is twofold. First in d = 2 we can easily simulate our our sampling process for

7Reproducible code available at https://github.com/shamindras/sce.
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Yi and more importantly visualize it to confirm our intuition. Second, in this
2D setting (for � := 1 fixed regime), we can calculate the Pitman estimator
directly, since the intersection sets is a polygon, whose centroid has closed
form. For example the plot Figure 4.6.1 shows the progressive simulation of
our projection intersection set (in green) as the sample size n increases. The
Pitman estimator is the blue centroid of this intersection set. As expected
with an increase in the sample size n, the red dashed-line nonagon representing
bvpit +K, quickly overlaps the true shifted v +K black dashed-line nonagon.
In other words bvpit quickly converges to the true parameter v, as measured by
square loss error. Such 2D centroid computations are readily implemented in
open source software packages (Gillies et al., 2007; Pebesma, 2018).
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Figure 4.6.1: The intersection set for different sample sizes for a 2D nonagon

We can also view the squared loss errors as a function of our sample
size n, as seen in Figure 4.6.2. Here we calculate the Pitman estimator
explicitly as the centroid of the intersection polygon. We estimate the location
parameter v using the sample mean (v), the Pitman location estimator (bvpit),
and our projection location estimator (bvprj). We then measure the estimation
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error using the Euclidean norm with 100 replications for each value of n 2
{5, 10, 20, 30, 50, 100}. We plot the mean and the 25

th and 75
th quantiles for

each estimator, for each value of n. As expected the Pitman estimator is
statistically optimal (uniformly) across all replications, but our projection
location estimator begins to converge closer (in estimation error) to it, and
both at a faster rate than the sample mean.
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Figure 4.6.2: Estimation error in L2-loss for estimators: v (naive), bvpit, bvprj.

4.7 Discussion

In this paper we have proposed several estimators for location-scale parameters
in our multivariate uniform setting over convex bodies K 2 Kd. In the known
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scaling regime we demonstrated a fundamental trade-off arising between the
statistical optimality and the computational feasibility of estimation in general
settings. In particular we showed that although the multivariate uniform Pitman
estimator satisfies many favorable statistical decision-theoretic properties, it
amounts to computing the centroid of the critical set, which is not practical
apart from some very restricted settings. Motivated by this trade-off we
proposed our projection location estimator in the known scaling regime, and
demonstrate how to obtain location-scale MLEs in the unknown scaling regimes.
Most importantly we show that these estimators lie in the critical set, and thus
all converge at the rate of C(d,K)

n
with high probability. We support these rates

with matching minimax lower bounds in sample complexity. Additionally we
provide feasible algorithms with provable guarantees for our proposed estimators
over more general settings compared to known estimators.

However, this opens up many exciting directions for further exploration.
For example, our upper bounds hold for any estimator in the critical set, and
as such suboptimal in the dimension dependent constant C(d,K) compared
to the minimax lower bounds. These could be tightened further by exploiting
the convex-geometric structure of each individual estimator. If one seeks to
perform inference on these location-scale parameters of interest, there are
some approaches one could potentially adapt from techniques from Wasserman
et al. (2020) which apply over non-regular models. However as the authors
note that there are some known issues applying their techniques to uniform
distributions. Working on extending techniques to our multivariate uniform
setting poses an interesting new challenge. Another important direction is to
understand whether our techniques yield minimax optimal estimators where
the underlying distribution is non-uniform over K 2 Kd. We believe our upper
bounds techniques can achieve similar risk convergence rates, provided that the
underlying density is bounded away from zero in probability over the boundary
of the convex supporting set K. We defer this and the above open problems to
future work.
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Appendix - Chapter 4

4.A Preliminary

In this appendix we provide detailed proofs of all key statements from the main
paper. We first review the notation, and then key facts from mathematical
analysis, e.g. Lipschitz functions, convex analysis etc. They will be used
repeatedly throughout the appendix.

4.A.1 Notation Summary

To ensure that the appendix is can be read in a standalone manner, we begin
by consolidating the key notation used in the paper in Table 4.A.19.

4.A.2 Required convex analysis and convex geometry results

Since our work relies a variety of core ideas from convex analysis and convex
geometry we first introduce some common definitions which will be referred to
in subsequent proofs. Although many definitions and facts related to convex
bodies are well known and found in convex analysis textbooks (e.g. (Deutsch,
2001; Niculescu and Persson, 2018)) we note them here to ensure that our work
is largely self-contained10.

Definition 4.41 (Convex Body). A convex body in K ⇢ Rd is a compact
convex set with a non-empty interior. Furthermore we denote the space of all
convex bodies in Rd by Kd, i.e., Kd :=

�
K ⇢ Rd

��K is a convex body
 
.

Lemma 4.42. Let d � 1 be a fixed integer. Then, any convex body K 2 Kd

(as per Definition 4.41) has a strictly positive volume (Lebesgue measure) i.e.
vold (K) > 0.

9Unless stated otherwise K ✓ Rd is a closed, non-empty convex set, and ⌦ ✓ Rd. We
further assume that v 2 Rd, and that A,B ✓ Rd are non-empty sets.

10For reader convenience, where possible, we try to provide short proofs to keep the text
self-contained or provide suitable detailed references thereof. On first reading we recommend
skimming this section and thereafter referring to it as needed in subsequent proofs.
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Table 4.A.1: Notation and conventions used in this chapter

Variables and inequalities

a ^ b min {a, b} for each a, b 2 R
a _ b max {a, b} for each a, b 2 R

scalars x, y, z 2 R
vectors x,y, z 2 Rd

matrices X,Y,Z 2 Rd⇥m

.  up to positive universal constants
& � up to positive universal constants

an = O (1) (9C > 0)(9N 2 N)(8n � N)(|an| < C)

an = O (bn)
an

bn
= O (1)

an = o (1) (8C > 0)(9N 2 N)(8n � N)(|an| < C)

an = o (bn)
an

bn
= o (1)

Xn = oP (1) (8" > 0)(P (|Xn| � ")
n!1���! 0)

Xn = OP (1) (8" > 0)(9C > 0)(9N 2 N)(8n � N)(P (|Xn| � C)  ")

Functions and sets

Indicator function I⌦(x) Takes value 1 when x 2 ⌦, and 0 otherwise.
⇧K : Rd ! K `2-projection of any x 2 Rd onto K

[n] {1, . . . , n}, for n 2 N
A+B {a+ b |a 2 A, b 2 B}, i.e., Minkowski Sum of A,B.
A�B {a� b |a 2 A, b 2 B}.
v +K {v + k |k 2 K}, i.e., translation of of A by v.

µK, for µ 2 R \ {0} {µk |k 2 K}
B

d

2(x, r)
�
y 2 Rd

�� ky � xk2  r
 
.

B
d

2(x, r)
�
y 2 Rd

�� ky � xk2 < r
 
.

Sd�1
�
x 2 Rd

�� kxk2 = 1
 

�d d-dimensional Lebesgue measure, d 2 N
vold (K) volume of K with respect to �d
int (K) interior of K.

centroid (K) centroid of K.
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Proof of Lemma 4.42. Note that K is compact, and hence closed, thus it is
Lebesgue measurable with respect to �d. Moreover, since K 2 Kd, it has a
non-empty interior. So suppose WLOG (by translation invariance of �d), that
0 2 int (K). Then there exists an " > 0 such that B(0, ") ✓ K. Now, we have
that vold (B(0, ")) = ⇡

d/2

�( d

2+1)
"
d, e.g., see Jones (1993, Chapter 9, Section C).

As such vold (B(0, ")) > 0 for each d 2 N. We then have by monotonicity of
the Lebesgue measure that

0 < vold (B(0, "))  vold (K), for each d 2 N. (4.47)

As required.

Definition 4.43 (Centroid of a Convex Body). The centroid of a convex body
K ⇢ Rd, with strictly positive Lebesgue measure, is defined as follows:

centroid (K) :=

R
xIK(x) d�d(x)R
IK(x) d�d(x)

=

R
xIK(x) d�d(x)

vold (K)

Remark 4.44 (Centroid is Unique). Since vold (K) > 0 per Lemma 4.42 we have
that centroid (K) is well defined for any convex body K ⇢ Rd. Furthermore
since centroid (K), is defined in terms of the d-dimensional Lebesgue measure
�d, it is unique in Rd.

Definition 4.45 (Metric Projection onto a Convex Set). Let K be a non-empty
subset of Rd, and let x 2 Rd. The (possibly empty) set of Euclidean best
approximations from x to K is denoted by PK(x), where

PK(x) :=

⇢
y 2 K

���� kx� yk2 = inf
w2K

kw � yk2
�

This defines a mapping PK from Rd into the subsets of K called the metric
projection onto K.

Theorem 4.46 (Uniqueness of Metric Projections in Finite Dimensions). Let
K ⇢ Rd be a non-empty, closed, and convex set. Then for each x 2 Rd we have
that PK(x) is a unique mapping i.e. a singleton. In such cases we denote the
singleton mapping PK(x) by ⇧K(x) := argmin

w2K
kx�wk2.

Proof of Theorem 4.46. See (Deutsch, 2001, Theorem 3.5) and (Deutsch, 2001,
Theorem 3.6) for details.
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Theorem 4.47 (Characterization of Best Approximations from Convex Sets).
Let K be a convex subset of the inner product space X,x 2 X, and y0 2 K.
Then {y0} = PK(x) if and only if

hx� y0,y � y0i  0

for all y 2 K

Proof of Theorem 4.47. See (Deutsch, 2001, Theorem 4.1) for details.

Theorem 4.48 (Pythagorean Theorem of Convex Set Projections). Let K ⇢ Rd

be a closed convex set, x 2 Rd
, and y = ⇧K(x) Then for any z 2 K we have:

ky � zk  kx� zk

Proof of Theorem 4.47. Since K ⇢ Rd be a closed convex set, from Theo-
rem 4.46 y = ⇧K(x) is well defined, and a singleton. We then observe that for
any z 2 K:

kx� zk2 = kx� y + y � zk2

= kx� yk2 + 2hx� y,y � zi+ ky � zk2

� ky � zk2 (From Theorem 4.47, hx� y,y � zi+ ky � zk � 0)

This implies ky � zk  kx� zk as required.

Theorem 4.49 (Translation and Scale invariance of Projection on Closed
Convex Sets). Let K ⇢ Rd be a closed (non-empty) convex set, x,y 2 Rd, and
alpha 2 R \ {0}. We then have:

⇧K+y(x+ y) = ⇧K(x) + y (4.48)
⇧↵K(↵x) = ↵⇧K(x) (4.49)

Proof of Theorem 4.49. See (Deutsch, 2001, Theorem 2.7) for details.

Lemma 4.50. For a given convex body K ⇢ Rd as per Definition 4.41, if X ⇠
Unif[K] then centroid (K) = E (X). From this it follows that centroid (K) =

0 () E (X) = 0.
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Proof of Lemma 4.50. Firstly, per Definition 4.1 X ⇠ Unif[K] () fX(x) :=
IK(x)

vold (K) , where fX(x) is the probability density function of X. Now we have
from Definition 4.43:

centroid (K) :=

R
Rd xIK(x) d�d(x)R
Rd IK(x) d�d(x)

(by definition.)

=

R
Rd xIK(x) d�d(x)

vold (K)
(since

R
Rd IK(x) d�d(x) = vold (K).)

=

Z

Rd

x
IK(x)

vold (K)
d�d(x)

=

Z

Rd

xfX(x) d�d(x) (since fX(x) := IK(x)
vold (K) .)

=: E (X) (since E (X) :=
R
Rd xfX(x) d�d(x).)

We have shown that centroid (K) = E (X). From this it does indeed follow
that centroid (K) = 0 () E (X) = 0 as required.

Lemma 4.51. Under the conditions of Lemma 4.50, if X ⇠ Unif[K] and Y =

v + �X then Y ⇠ Unif[v + �K]. Further we have that centroid (v + �K) = v.

Proof of Lemma 4.51. Firstly, since X ⇠ Unif[K] () fX(x) =
IK(x)

vold (K) ,
where fX(x) is the probability density function of X. We observe that Y can
be represented as an affine transformation Y = v + (�Ip)X, where Ip 2 Rp⇥p

is the identity matrix. We then have:

fY(y) =
fX

⇣
(�Ip)

�1
(y � v)

⌘

|det (�Ip)|
(Affine density transformation.)

=
fX

�
1
�
(y � v)

�

�p
(Since (�Ip)

�1
=

1
�
Ip, and det (�Ip) = �

p)

=
IK
�
1
�
(y � v)

�

�p vold (K)
(Since fX(x) = IK(x)

vold (K))

=
Iv+�K(y)

vold (�K)
(since 1

�
(y � v) 2 K () y 2 v + �K)

=
Iv+�K(y)

vold (v + �K)
(translation invariance of Lebesgue measure)

Since fY(y) =
Iv+�K(y)

vold (v+�K) , we have that Y ⇠ Unif[v + �K], as required.
Additionally from Lemma 4.50 we have that: centroid (v + �K) = E (Y).
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But by linearity of expectation E (Y) = E (v + �X) = v + �E (X) = v. So
centroid (v + �K) = v, as expected.

Lemma 4.52. If A,B ⇢ Rd are both non-empty convex sets, then for �, µ 2 R
�A+ µB := {�a+ µb |a 2 A,b 2 B}, is a non-empty convex set.

Proof of Lemma 4.52. Let x1,x2 2 �A + µB, we then have x1 = �a1 + µb1

and x2 = �a2 + µb2 for some a1,a2 2 A, b1,b2 2 B (since A,B are both
non-empty). Then for � 2 [0, 1], we have:

x := �x1 + (1� �)x2

= �(�a1 + µb1) + (1� �)(�a2 + µb2)

= �(�a1 + (1� �)a2| {z }
2 A, by convexity

) + µ(�b1 + (1� �)b2| {z }
2 B, by convexity

)

2 �A+ µB

Lemma 4.53 (Minkowski Sum of Convex Bodies is a Convex Body). If
A,B ⇢ Rd are both convex bodies, then A+B ⇢ Rd is also a convex body.

Proof of Lemma 4.53. Firstly, since A,B ⇢ Rd both have a non-empty interior
per Definition 4.41, then A+B ⇢ Rd is also non-empty. In order to show that
A+B has a non-empty interior, we note firstly that since A is a convex body,
let a 2 int (A). Then there exists " > 0 such that a 2 B(a, ") ⇢ A. For a fixed
b 2 B we then have a+ b 2 B(a+ b, ") = B(a, ") + {b} ⇢

S
d2B (A+ d) =

A+B. As such, A+B has a non-empty interior.
Now it suffices to show that A+B is a compact set in Rd. We observe that

the addition map f : A⇥B ! A+B is continuous in Rd, a normed space. As
such we have that the image of a compact set A ⇥ B, under the continuous
addition map i.e. f(A⇥B) = A+B, is compact. From Lemma 4.52 A+B is
a non-empty convex set, and we have shown that it has a non-empty interior
and compact. Thus A+B is a convex body in Rd.

Lemma 4.54. If A ⇢ Rd is a convex body with 0 2 int (A), then for 0 < µ1 
µ2 we have µ1A ✓ µ2A.

Proof of Lemma 4.54. Since µ2 > 0 by assumption, we can consider WLOG
the scaling of A by µ where µ :=

µ1
µ2

, and hence 0 < µ  1. We now need to
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show for each a 2 A =) µa 2 A. By assumption we have that 0 2 int (A), it
follows by the convexity of A that

A � [0,a] := {x 2 A |x = (1� �)0+ �a, � 2 [0, 1]} = {x 2 A |x = �a, � 2 [0, 1]}

Thus µa 2 [0,a] ⇢ A as required.

Remark 4.55. We note that it is essential to assume that 0 2 int (A) in
Lemma 4.54. Consider the case µ1 = 1, µ2 = 5 with p = 2, and A = [2, 3] ⇥
[2, 3] ⇢ R2. Here 0 /2 int (A). Then µ1A = A = [2, 3] ⇥ [2, 3] and µ2A =

[10, 15]⇥ [10, 15] and indeed µ1A \ µ2A = ;, in this case.

Theorem 4.56 (Centroid of a convex body lies in its interior). The centroid
of a convex body K ⇢ Rn lies in int (K).

Proof of Theorem 4.56. The proof is found in (Niculescu and Persson, 2018,
Proposition 3.9.2), for barycentre of a non-empty convex set. In our setting the
conditions are satisfied since we are working with convex bodies (which have a
non-empty interior) and in the case of uniform distribution over convex bodies
the barycentre and centroid coincide per Lemma 4.50.

Theorem 4.57 (WLLN for Random Vectors). Let (Xi)
1
i=1 be random vectors

in Rd (d 2 N, fixed), and let Xn :=
1
n

P
n

i=1Xi. If E (kX1k2) < 1 then
Xn

p! E (X1)

Proof of Theorem 4.57. The proof is found in (Ferguson, 1996, Theorem 4(a))

Remark 4.58. We note that the proof in (Ferguson, 1996, Theorem 4(a)) relies
on the use of characteristic functions of random vectors Xi 2 Rd. As such
the sufficient conditions for the WLLN to hold per Theorem 4.57 only require
E (kX1k2) < 1. This is a weaker condition than requiring bounded second
moments in univariate WLLN theorems whose proofs rely on Chebychev’s
inequality.

We will use the following general lemma to later establish the compactness
and convexity of the critical set, i.e.,

T
n

i=1 (Yi � �K).

Lemma 4.59 (Preservation of compactness and convexity under affine maps).
Let K 2 Kd be a convex body. Further, for any fixed ↵ 2 R, c 2 Rd, let
f : Rd ! Rd, such that f(x) := ↵x + c be an affine map. Then ↵K + c is
compact and convex.
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Proof of Lemma 4.59. First we show that the affine map f is continuous. Fix
any " > 0, and choose � := "

|↵|+1 > 0. Then for for any x1,x2 2 Rd such that
kx1 � x2k2 < �. We then have that:

kf(x1)� f(x2)k2 = k↵x1 � ↵x2k2 = |↵| kx1 � x2k2 < |↵| � < " (4.50)

So indeed the affine map is continuous. Since K 2 Kd, it is indeed compact
and convex. Moreover the since b+ ↵K := f [K], i.e., the image of K under
f . Since f is affine, convexity of b + ↵K is preserved. Similarly since f is
continuous, the compactness of b+ ↵K is also preserved.

4.A.3 Useful miscellaneous results

Here we prove some useful standard results that are used in several of the
remaining proofs.

Definition 4.60 (Lipschitz function). Let X ✓ Rd be non-empty, with the
metric d : X ⇥X ! [0,1). Then for a given constant B > 0, we have that
f : X ! R is a B-Lipschitz function if and only if:

|f(x)� f(y)|  Bd(x,y), for each x,y 2 X. (4.51)

Typically we take d(x,y) to be the Euclidean metric in Rd throughout this
paper, i.e., d(x,y) := kx� yk2, for each x,y 2 X.

Lemma 4.61 (Maximum of a finite collection of Lipschitz functions is Lipschitz).
Let X ✓ Rd be non-empty, with the Euclidean metric, and m 2 N be fixed.
Furthermore, let fj : X ! R be a Bj-Lipschitz function for each j 2 [m], as
per Definition 4.60. Then g : X ! Rd, defined as g(x) := maxj2[m] fj(x), is a
B

⇤-Lipschitz function, for some B
⇤
> 0. Here we can take B

⇤ := maxj2[m]Bj.

Proof of Lemma 4.61. We will prove this by induction on m 2 N. First for
m = 1, we have that f1 is Bj-Lipschitz by assumption, so the statement is
true. Next for m = 2 we want to show that g(x) := max {f1(x), f2(x)} is
B

⇤-Lipschitz, for some B
⇤
> 0. To see this, first observe that:

f1(x)� f1(y)  |f1(x)� f1(y)|  B1 kx� yk2 (4.52)
=) f1(x)  f1(y) +B1 kx� yk2

 g(y) +B1 kx� yk2 (4.53)

Similarly we obtain:

f2(x)  g(y) +B2 kx� yk2 (4.54)
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Combining Equations (4.53) and (4.54) we have that:

g(x) := max {f1(x), f2(x)}  g(y) +B
⇤ kx� yk2 (4.55)

=) g(x)� g(y)  B
⇤ kx� yk2 (4.56)

Where B
⇤ := max {B1, B2}. Similarly by interchanging the roles of x,y in

Equation (4.56) we obtain:

g(y)� g(x)  B
⇤ kx� yk2 (4.57)

Combining Equations (4.56) and (4.57), we see that:

|g(x)� g(y)|  B
⇤ kx� yk2 (4.58)

Which shows that g(x) is a B
⇤-Lipschitz function, as required. So the statement

is true for m = 2. Now we assume the inductive hypothesis, i.e., h(x) :=

maxj2[k] fj(x), is a B
⇤-Lipschitz function, for some B

⇤
> 0. Here we can take

B
⇤ := maxj2[k]Bj . We now show that this is true for some m := k 2 N. We

now show that this is true for m = k+1. Let fk+1 be a Bk+1-Lipschitz function.
Let g(x) := maxj2[k+1] fj(x). We then have that:

g(x) := max
j2[k+1]

fj(x)

= max {max
j2[k]

fj(x), fk+1(x)}

(since max {a, b, c} = max {max {a, b}, c}, 8 a, b, c 2 R.)
= max {h(x), fk+1(x)} (4.59)

Applying the m = 2 base case to Equation (4.59), this implies that g(x) is a
B

0-Lipschitz function, where B
0 := maxj2[k+1]Bj . As required.

Lemma 4.62 (B-Lipschitz characterization via bounded derivative). Let f :

I ! R be continuous and once differentiable, where I ✓ R is an interval
(possibly unbounded).

f is B-Lipschitz, with B > 0 () (9B > 0)(8x 2 R) : (
��f 0

(x)
��  B) (4.60)

Proof of Lemma 4.62. We prove both directions. In both parts we assume that
f : I ! R be continuous and once differentiable, where I ✓ R is an interval
(possibly unbounded).
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( =) ). Suppose that f is B-Lipschitz, with B > 0. We then have that, for
some fixed (but arbitrary) c 2 I:

|f(x)� f(c)|  B |x� c| (by definition of B-Lipschitz property.)

=)
����
f(x)� f(c)

x� c

����  B (taking limits as x! c.)

=)
��f 0

(c)
��  B

Since c 2 I is arbitrary, indeed |f 0
(x)|  B, for each x 2 I, as required.

((= ). Suppose that |f 0
(x)|  B, with B > 0. Further let x, y 2 I, such that

x < y. Since f is differentiable on I, we have:

|f(x)� f(y)| 
��f 0

(c)
�� |x� y|

(by the mean value theorem, for some c 2 (x, y).)
 B |x� y| (by assumption.)

Which implies that f is B-Lipschitz, as required.

Lemma 4.63 (Properties of `2-diameters of compact sets). Let A ✓ B ✓ Rd

be two non-empty, compact sets with 0 2 int (A). Moreover let ↵ 2 R, c 2 Rd

be fixed, but arbitrary. We then have the following definition and key facts.

diam (A) := sup {kx� yk2 |x,y 2 A} (4.61)
diam (A)  diam (B) <1 (4.62)

diam (↵A) = |↵| diam (A) (4.63)
diam (A+ c) = diam (A) (4.64)

Proof of Lemma 4.63. We prove each of properties specified in Equations (4.62)
and (4.64) in turn.

(Proof of Equation (4.62)). Now per Since the k·k2 : Rd⇥Rd ! [0,1) is a contin-
uous function. It then follows that We have diam (A) := sup {kx� yk2 |x,y 2 A} <

1, since it is a supremum of a continuous function over a compact set, i.e., a
maximum. Similarly it follows that diam (B) <1. We then have:

{kx� yk2 |x,y 2 A} ✓ {kx� yk2 |x,y 2 B} (since A ✓ B.)
=) sup {kx� yk2 |x,y 2 A}  sup {kx� yk2 |x,y 2 B}

(by monotonicity of sup.)
() diam (A)  diam (B) (using Equation (4.61).)
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as required. ⌅

(Proof of Equation (4.63)). First if ↵ = 0, we then have that ↵A = {0}.
It then follows that:

diam (↵A) = diam ({0}) = 0 = ↵ diam (A) (using Equation (4.62))

as required. Next suppose ↵ 2 R \ {0}. We then observe that:

diam (↵A) := sup {k↵x� ↵yk2 |x,y 2 A} (using Equation (4.61))
= sup {k↵(x� y)k2 |x,y 2 A}
= sup {|↵| kx� yk2 |x,y 2 A}
= |↵| sup {kx� yk2 |x,y 2 A}
=: |↵| diam (A) (using Equation (4.61))

as required. ⌅

(Proof of Equation (4.64)). Given c 2 Rd, we observe that:

diam (A+ c) := sup {k(x+ c)� (y + c)k2 |x,y 2 A}
(using Equation (4.61))

= sup {kx� yk2 |x,y 2 A}
=: diam (A) (using Equation (4.61))

as required. ⌅

Thus all properties specified in Equations (4.62) and (4.64) are now proved.
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4.B Proofs of Section 4.1

4.B.1 Formal justification for b✓MLE with unknown scale parameter

We first provide a Formal justification for the claim that b✓MLE =
Y(1)+Y(n)

2 , in
Section 4.1.

Proposition 4.64 (MLE for univariate uniform with unknown scale). Let
Xi

i.i.d.⇠ Unif[�1
2 ,

1
2 ], and let Yi = �Xi + ✓ for each i 2 [n], so that Yi

i.i.d.⇠
Unif[✓ � �

2 , ✓ +
�

2 ]. Then the MLE, b✓MLE, for ✓, is given by b✓MLE =
Y(1)+Y(n)

2 .

Proof of Proposition 4.64. To ensure our paper is self-contained we quickly
prove the result here. To do this, we observe that: fYi

(yi) =
I[✓��

2 ,✓+�

2 ](yi)

�
, for

each i 2 [n]. We then have that the likelihood is given by:

L(✓,� | Y1, . . . , Yn) =
Q

n

i=1 I[✓��

2 ,✓+
�

2 ]
(yi)

�n

=

Q
n

i=1 I
�
yi � ✓ � �

2 , yi  ✓ +
�

2

�

�n
(4.65)

The likelihood, as per Equation (4.65), is maximized when the numerator
indicator function evaluates to 1, and the denominator is minimized over
� > 0. First, we note that the indicator evaluates to 1, when both the following
conditions satisfied:

y(n) � ✓ 
�

2
and y(1) � ✓ � �

�

2
. (4.66)

() � � 2(y(n) � ✓) and � � 2(✓ � y(1)) (4.67)

Or equivalently, we have that:

� � max
�
2(✓ � y(1)), 2(y(n) � ✓)

 
(4.68)

But Equation (4.68) is minimized over � > 0, when the RHS expression is
minimized. This occurs when we have:

2(✓ � y(1)) = 2(y(n) � ✓) () ✓ =
y(1) + y(n)

2
. (4.69)

Which implies that:
b✓MLE =

Y(1) + Y(n)

2
. (4.70)

As required.

Remark 4.65. We note that the proof of Proposition 4.64 readily generalizes to
the case where Xi

i.i.d.⇠ Unif[��,�], for any fixed � > 0.
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4.B.2 Proof of Proposition 4.7

Proposition 4.7 (Parameter identifiability). The data generating process per
Definition 4.4, satisfies parameter identifiability for location parameter v, and
scale parameter �.

Proof of Proposition 4.7. More formally consider pair of parametric family of

densities, P✓1 , P✓2 , where ✓1, ✓2 2 ⇥. In our case let us denote ✓i =


vi

�
⇤
i

�

for i 2 {1, 2}. We then have that the densities P✓1 , P✓2 are identifiable if
and only if P✓1 = P✓2 =) ✓1 = ✓2, for all ✓1, ✓2 2 ⇥. To demonstrate
identifiability we observe that it is equivalent to showing the contrapositive
statement ✓1 6= ✓2 =) P✓1 6= P✓2 . Suppose that ✓1 6= ✓2 and by way of
contradiction assume that P✓1 = P✓2 . Now WLOG we can assume that v1 = 0,
and we now consider 2 cases. First, consider the case where v2 = 0. But
this implies �⇤1 6= �

⇤
2. But since v2 = 0 =) �

⇤
1K = �

⇤
2K =) �

⇤
1 = �

⇤
2, a

contradiction. Second, consider the case where v2 6= 0. But we then have:

v2 6= 0

=) �
⇤
1K = v2 + �

⇤
2K

=) centroid (�
⇤
1K) = centroid (v2 + �

⇤
2K)

=) 0 = v2

Which is a contradiction. Combining the above we do indeed observe that
✓1 6= ✓2 =) P✓1 6= P✓2 , or equivalently that P✓1 = P✓2 =) ✓1 = ✓2. As such
we have shown that we have model parameter identifiability for estimation
purposes.
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4.C Proofs of Section 4.2

With the main mathematical preliminaries set up, we provide proofs of all
mathematical statements in the main text in turn. For reader convenience we
restate the corresponding statements from the paper in the appendix before
providing the proof thereof.

4.C.1 Proof of Theorem 4.9

We note that the proof of Theorem 4.9 can be found in Ibragimov and
Has’minskĭı (1981, Lemma 2.1) and Bickel and Doksum (2016, Theorem 8.3.1).
Here we provide an alternative proof which is effectively a step-by-step multi-
variate extension of the relevant univariate results of (Lehmann and Casella,
1998, Chapter 3).

Setup and key notation

We first setup the following notation for our multivariate setting. Firstly
we define x(n,d) := (x(n,d)

1 , . . . ,x(n,d)
n )

> := (x>
1 , . . . ,x

>
n )

>. Here x(n,d) 2 Rnd

denotes our stacked sample vector of the n i.i.d. d-dimensional samples i.e.
x>
i
:= (xi,1, . . . , xi,d)

> 2 Rd
, 8 i 2 [n]. Additionally for convenience, we also

denote this i
th component more explicitly as x(n,d)

i
:= x>

i
. For a fixed vector

v 2 Rd we define the stacked bar vector v(n,d) := (v>
, . . . ,v>

)
>

| {z }
n times

. In this case

v(n,d) 2 Rnd denotes n copies of the same d-dimensional fixed location vector i.e.
v(n,d)
i

= v>
= (v1, . . . , vp)

> 2 Rd
, 8 i 2 [n]. Using this multivariate notation

allows us to define translation of each component of x(n,d) 2 Rnd by a common
location vector a 2 Rd concisely as follows:

x(n,d)
+ a(n,d) := (x>

1 , . . . ,x
>
n )

>
+ (a>, . . . ,a>)>| {z }

n times

= (x>
1 + a>, . . . ,x>

n + a>)>

Here x(n,d)
+ a(n,d) 2 Rnd. This is a convenient multivariate extension of

notation used in Lehmann and Casella (1998, Chapter 3), to ensure the proofs
are easier to follow.

Definition 4.66 (Location equivariance and invariance). An estimator � :

Rnd ! Rd is called location equivariant if:

�(x(n,d)
+ a(n,d)) = �(x(n,d)

) + a(n,d)n , 8 x(n,d)
, a(n,d) 2 Rnd (4.71)

= �(x(n,d)
) + a (since a(n,d)

i
= a, 8 i 2 [n])
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4.C. Proofs of Section 4.2

An estimator u : Rnd ! Rd is called location invariant if:

u(x(n,d)
+ a(n,d)) = u(x(n,d)

), 8 x(n,d)
, a(n,d) 2 Rnd (4.72)

Multivariate Pitman location estimation

Lemma 4.67 ((Lehmann and Casella, 1998), Lemma 3.6, Mulitvariate setting).
If �0 is any equivariant estimator, then a necessary and sufficient condition for
� to be equivariant is that

�(x(n,d)
) = �0

⇣
x(n,d)

⌘
+ u(x(n,d)

), 8 x(n,d) 2 Rnd (4.73)

and
u(x(n,d)

+ a(n,d)) = u(x(n,d)
), 8 x(n,d)

, a(n,d) 2 Rnd (4.74)

Proof of Lemma 4.67. We can now prove both directions following the same
approach as the univariate proof, with our multivariate equivariance definition
and notation.
( =) ) Firstly assume that �0 and � are both equivariant estimators. So we
then define

u(x(n,d)
) := �(x(n,d)

)� �0
⇣
x(n,d)

⌘
, 8 x(n,d) 2 Rnd (4.75)

We then have that for all x(n,d)
,a(n,d):

u(x(n,d)
+ a(n,d)) = �(x(n,d)

+ a(n,d))� �0(x(n,d)
+ a(n,d))

(using Equation (4.75))

= �(x(n,d)
) + a(n,d)n � (�0

⇣
x(n,d)

⌘
+ a(n,d)n )

(by equivariance of �, �0)

= �(x(n,d)
)� �0

⇣
x(n,d)

⌘

= u(x(n,d)
) (per Equation (4.75))

( (= ) Now we conversely assume that �0 is an equivariant estimator and
u(x(n,d)

+ a(n,d)) = u(x(n,d)
), 8x(n,d). We then define

�(x(n,d)
) := u(x(n,d)

) + �0

⇣
x(n,d)

⌘
(4.76)
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4. uniform location estimation on convex bodies

To show that � is indeed equivariant, we proceed as follows:

�(x(n,d)
+ a(n,d)) = u(x(n,d)

+ a(n,d)) + �0(x
(n,d)

+ a(n,d))

(using Equation (4.76))

= u(x(n,d)
) + �0

⇣
x(n,d)

⌘
+ a(n,d)n

(since u is invariant, �0 is equivariant)

= �(x(n,d)
) + a(n,d)n (by definition of �(x(n,d)

))

Which shows that � is indeed equivariant.

Lemma 4.68 ((Lehmann and Casella, 1998), Lemma 3.7, Mulitvariate setting).
A function u is invariant i.e. satisfies u(x(n,d)

+a(n,d)) = u(x(n,d)
), 8x(n,d)

,a(n,d) 2
Rnd, if and only if it is a function of the differences y(n,d)

i
= x(n,d)

i
�x(n,d)

n , 8i 2
[n� 1], n � 2 and for n = 1 if and only if is constant valued.

Proof of Lemma 4.68. As suggested by the theorem statement, we will split
into cases n = 1 and n � 2 and prove both directions. Let us consider the case
n = 1.
( =) ) Suppose u is invariant. We then have u(x(1,d)

+a(1,d)) = u(x(1,d)
), 8x(1,d)

,a(1,d).
Here we can set a(1,d) = �x(1,d), which gives us u(x(1,d)

) = u(x(1,d) � x(1,d)
) =

u(0), which is indeed constant valued.
((= ) Now suppose u is a constant valued function i.e. u(x(1,d)

) = c, 8 x(1,d),
for some constant c 2 Rd. Then we have:

u(x(1,d)
+ a(1,d)) = c

= u(x(1,d)
)

Indeed u is invariant to translations.
Now we consider the case n � 2. We introduce the difference invariant as
y(n,d) := (x(n,d)

1 � x(n,d)
n , . . . ,x(n,d)

n�1 � x(n,d)
n )

>.
( =) ) Suppose u is invariant. We then have:

u

⇣
(x(n,d) � x(n,d)

n )
>
⌘
= u

⇣
(x(n,d)

1 � x(n,d)
n , . . . ,x(n,d)

n�1 � x(n,d)
n ,x(n,d)

n � x(n,d)
n )

>
⌘

= u

⇣
(x(n,d)

1 � x(n,d)
n , . . . ,x(n,d)

n�1 � x(n,d)
n ,0)>

⌘

= u(y(n,d)
,0)) (by definition of y(n,d))

= u
0
(y(n,d)

) (by definition of u0)
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So u is indeed a function of the differences y(n,d), as required.
((= ) Now suppose that u is a function of the difference invariant y(n,d) i.e.
u(x(n,d)

) = v(y(n,d)
), 8 x(n,d), for some function v. We then have:

u(x(n,d)
+ a(n,d)) = v(x(n,d)

1 + a� (x(n,d)
n + a), . . . ,x(n,d)

n�1 + a� (x(n,d)
n + a))

= v(x(n,d)
1 � x(n,d)

n , . . . ,x(n,d)
n�1 � x(n,d)

n )

= v

⇣
y(n,d)

⌘
(by definition)

= u(x(n,d)
) (by assumption)

So indeed u is an invariant function.

Theorem 4.69 ((Lehmann and Casella, 1998), Theorem 3.8, Mulitvariate
setting). If �0 is any equivariant estimator, then a necessary and sufficient
condition for � to be equivariant is that there exists a function v of n � 1

arguments for which

�(x(n,d)
) = �0

⇣
x(n,d)

⌘
� v(y(n,d)

), 8 x(n,d) 2 Rnd

Proof of Theorem 4.69. This follows directly in the multivariate setting (as
with the univariate case) by a combination of the results of Lemma 4.67 and
Lemma 4.68.

Definition 4.70 ((Lehmann and Casella, 1998), Definition 3.2). A family of
densities f(x | ⇠), with parameter ⇠, and a loss function L(⇠, d) are location
invariant if, respectively, f (x

0 | ⇠0) = f(x | ⇠) and L(⇠, d) = L (⇠
0
, d

0
) whenever

⇠
0
= ⇠ + a and d

0
= d + a. If both the densities and the loss function are

location invariant, the problem of estimating ⇠ is said to be location invariant
under the transformations:

X
0
i = Xi + a (4.77)
⇠
0
i = ⇠i + a (4.78)
d
0
= d+ a (4.79)

Theorem 4.71 ((Lehmann and Casella, 1998), Theorem 3.10, Mulitvariate
setting). Let x(n,d) be distributed from a location family. Let y(n,d) := (x(n,d)

1 �
x(n,d)
n , . . . ,x(n,d)

n�1 � x(n,d)
n ,0)> be given. Suppose that the loss function ⇢ is

location invariant and that there exists an equivariant estimator �0 of ⇠ with
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finite risk. Assume that for each y(n,d) there exists a number v
�
y(n,d)

�
=

v
⇤
(y(n,d)

) which minimizes

E0

⇣
⇢

h
�0

⇣
x(n,d)

⌘
� v

⇣
y(n,d)

⌘i
| y(n,d)

⌘

Then, a location equivariant estimator � of ⇠ with minimum risk exists and is
given by

�
⇤
(x(n,d)

) = �0

⇣
x(n,d)

⌘
� v

⇤
(y(n,d)

)

Proof of Theorem 4.71. We follow the univariate proof approach taken in
(Keener, 2010, Theorem 10.4), which extends naturally to our multivariate
setting. First we define the risk of a location equivariant estimator to be
R(✓, �) := E0

�
⇢
�
�0
�
x(n,d)

�
� v

�
y(n,d)

���
.

R(✓, �) := E0

⇣
⇢

⇣
�0

⇣
x(n,d)

⌘
� v

⇣
y(n,d)

⌘⌘⌘

= E0

⇣
E0

⇣
⇢

⇣
�0

⇣
x(n,d)

⌘
� v

⇣
y(n,d)

⌘⌘
| y(n,d)

⌘⌘

� E0

⇣
E0

⇣
⇢

⇣
�0

⇣
x(n,d)

⌘
� v

⇤
(y(n,d)

)

⌘
| y(n,d)

⌘⌘

= E0

⇣
⇢

⇣
�0

⇣
x(n,d)

⌘
� v

⇤
(y(n,d)

)

⌘⌘

= E0

⇣
⇢

⇣
�
⇤
(x(n,d)

⌘⌘

= R (✓, �
⇤
)

4.C.2 Final proof of Theorem 4.9

We now come to the main proof of this section, namely that of Theorem 4.9.

Theorem 4.9 (Multivariate Pitman location estimator). Consider the more
general location estimation problem, under the known scaling regime. That
is, let d � 1 be a fixed positive integer, and denote v 2 Rd to be the fixed but
unknown location parameter. We then consider n observations, (Yi)

n

i=1, where
each observation Yi 2 Rd is generated from the following model:

Yi

a.s.
= v +Xi (4.5)

s.t. (X1, . . . ,Xn) ⇠ f, (4.6)

where f is a valid joint probability density of (X1, . . . ,Xn). Then under square
loss risk, for this generating process, the multivariate mimimum risk equivariant
location estimator is the Pitman estimator, bvpit, which is defined as follows:

bvpit =

R
Rd uf (y1 � u, . . . ,yn�1 � u,yn � u) duR
Rd f (y1 � u, . . . ,yn�1 � u,yn � u) du

. (4.7)
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Proof of Theorem 4.9. From Theorem 4.71 we know that for any equivariant
estimator, �0

�
x(n,d)

�
, of v, under the square error loss, we have that a minimum

risk equivariant estimator (MRE) is given by:

�
⇤
(x(n,d)

) = �0

⇣
x(n,d)

⌘
� E

⇣
�0

⇣
x(n,d)

⌘
| y(n,d)

⌘

Where �0
�
x(n,d)

�
is any equivariant estimator. We can proceed using a similar

derivation to the univariate case discussed in (Lehmann and Casella, 1998).
Let �0

�
x(n,d)

�
= x(n,d)

n . This indeed is location equivariant since we have:

�0(x
(n,d)

+ a(n,d)) = x(n,d)
n + a(n,d)n (by definition)

= �0

⇣
x(n,d)

⌘
+ a(n,d)n

As required. Further we know that Yi = xi � xn, 8 i 2 [n� 1], and yn = xn.
Expanding, we have that (x1,1, . . . ,x1,d,x2,1, . . . ,x2,d, . . . ,xn�1,1,xn�1,d,xn,1, . . . ,xn,d)

>
=

(y1,1+xn,1, . . . ,y1,d+xn,d,y2,1+xn,1, . . . ,y2,d+xn,d, . . . ,yn�1,1+xn,1,yn�1,d+

xn,d,yn,1, . . . ,yn,d)
>. We then have that Jacobian of this transformation is

equal to:

J =

✓
@xi,j

@yk,l

◆

(i,j,k,l)2[nd]
2 Rnd⇥nd

=

(
1 , if i = k, j = l or k = n, j = l

0 , otherwise

J =

0

BB@

@x1,1

@y1,1
· · · @x1,1

@yn,d

... . . . ...
@xn,d

@y1,1
· · · @xn,d

@yn,d

1

CCA =

0

BBB@

1 0 · · · 0

0 1 · · · 0

0 0
. . . 1

0 0 · · · 1

1

CCCA

Qualitatively, each row j 2 [nd] in the Jacobian matrix J 2 Rnd⇥nd, takes
values 1 only at the diagonal and n

th entries respectively i.e. Jj,j = Jj,n = 1

and all other entries take value 0. Since J is lower triangular, we have that it
is determinant is the product of its diagonal entries which all are equal to 1 i.e.
det (J) =

Q
i2[nd] Jii = 1 =) |det (J)| = 1.

To calculate the minimum risk equivariant estimator in this theorem explic-
itly, let us assume that the equivariant estimator

�0(X) = Xn
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has finite risk. To evaluate the conditional expectation in the theorem we need
the conditional distribution of Xn given Y (under P0 ), which we can obtain
from the joint density. Using a change of variables yi = xi�xn, i = 1, . . . , n�1,
in the integrals against dxi,

P0

✓
Y
Xn

◆
2 B

�
= E0IB(Y1, . . . ,Yn�1,Xn)

= E0IB(X1 �Xn, . . . ,Xn�1 �Xn,Xn)

=

Z
· · ·

Z
IB(x1 � xn, . . . ,xn)f (x1, . . . ,xn) dx1 · · · dxn

=

Z
· · ·

Z
f (y1 + xn, . . . ,yn�1 + xn,xn) dy1 · · · dyn�1dxn.

Therefore the joint density of (y1, . . . ,yn) is given by:

pY (y1, . . . ,yn) = f (y1 + yn, . . . ,yn�1 + yn,yn)

We thus have the conditional density pYn|(y1,...,yn�1) is

f (y1 + yn, . . . ,yn�1 + yn,yn)R
f (y1 + t, . . . ,yn�1 + t, t) dt

(4.80)

Now since Yn = Xn, we can now directly compute E (�0(X) | Y) as follows:

E (�0(X) | Y) = E (Xn | Y) (since �0(X) = Xn)
= E (Yn | Y) (since Yn = Xn)

=

R
tf (y1 + t, . . . ,yn�1 + t, t) dtR
f (y1 + t, . . . ,yn�1 + t, t) dt

(using Equation (4.80))

=

R
tf (x1 � xn + t, . . . ,xn�1 � xn + t, t) dtR

f (x1 � xn, . . . ,xn�1 � xn + t, t) dt
(In terms of xi’s)

= xn �
R
uf (x1 � u, . . . ,xn�1 � u,xn � u) duR
f (x1 � u, . . . ,xn�1 � u,xn � u) du

(Using u = xn � t)

From this we derive the Pitman estimator of v as:

bvpit = �
⇤
(X)

= �0(X)� E (�0(X) | Y)

=

R
uf (x1 � u, . . . ,xn�1 � u,xn � u) duR
f (x1 � u, . . . ,xn�1 � u,xn � u) du

As required.
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4.C.3 Proof of Corollary 4.11

Corollary 4.11 (Multivariate uniform Pitman location estimator). Let (Yi)
n

i=1
be generated according to Definition 4.4, with � known to the observer. Then
the Pitman estimator bvpit, of the location parameter v is the centroid of the
critical set, that is:

bvpit = centroid

 
n\

i=1

(Yi � �K)

!
. (4.8)

Proof of Corollary 4.11. Since we assume that � is known to the observer we
can take WLOG the scale parameter � = 1. From Theorem 4.9, we have that

bvpit =

R
uf (x1 � u, . . . ,xn � u) duR
f (x1 � u, . . . ,xn � u) du

(by Theorem 4.9)

=

R
u
Q

n

i=1 f (xi � u)) duR Q
n

i=1 f (xi � u) du
(by independence of Xi’s)

=

R
u
Q

n

i=1 (Ixi�K(u)) duR Q
n

i=1 (Ixi�K(u)) du

(since each Xi ⇠ Unif[K] () fXi
(x) =

IK(x)
vold (K))

=

R
uITn

i=1(xi�K)(u)duR
ITn

i=1(xi�K)(u)du
(since

Q
n

i=1 Ixi�K(u) = ITn

i=1(xi�K)(u))

= centroid

 
n\

i=1

(xi �K)

!
(per Definition 4.43)

As required.

4.C.4 Formal justification for Remark 4.12

Proposition 4.72 (Pitman location estimator for univariate uniform). Let
Xi

i.i.d.⇠ Unif[��,�], with � 2 R>0 known, and let Yi = Xi + v for each i 2 [n],
so that Yi

i.i.d.⇠ Unif[v � �, v + �]. Then the Pitman location estimator, bvpit, for
v, by applying Corollary 4.11, is given by bvpit =

Y(1)+Y(n)

2 .

Proof of Proposition 4.72. We first note that K := [��,�] is symmetric, and
thus �K = [��,�]. Therefore Yi �K = [Yi � �, Yi + �], for each i 2 [n], i.e.,
(Yi �K)

n

i=1 is a collection of n intervals. Since v 2 Yi�K, for each i 2 [n], once
again

T
n

i=1 (Yi �K) is non-empty a.s. and in this case it is again an interval.
Now, let Y(1), . . . , Y(n) denote the order statistics of our observed sample. Then
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applying Corollary 4.11 to our setting we observe that since it is

bvpit := centroid

 
n\

i=1

(Yi �K)

!
(using Corollary 4.11.)

= centroid

 
n\

i=1

�
Y(i) �K

�
!

(using the order statisics.)

= centroid
�
[Y(n) � �, Y(1) + �]

�
(since ordered intervals all intersect.)

=
(Y(n) � �) + (Y(1) + �)

2

=
Y(1) + Y(n)

2

As required.

4.C.5 Proof of Proposition 4.8

Proposition 4.8 (The critical set and its geometric properties). Let (Yi)
n

i=1 be
generated according to Definition 4.4. We define critical set to be

T
n

i=1 (Yi � �K),
for each n 2 N. Moreover, the critical set contains the true location vector
v almost surely for each n 2 N, and is thus non-empty. Furthermore it is a
compact convex set, and is thus closed and bounded.

Proof of Proposition 4.8. In the following, all statements for each i 2 [n] are
made almost surely (a.s.):

Yi 2 v + �K () v 2 Yi � �K (for each i 2 [n].)

() v 2
n\

i=1

(Yi � �K)

That is, P (v 2
T

n

i=1 (Yi � �K)) = 1, for all n 2 N, which proves the first
part of the assertion. Now for establishing convexity, we observe that for each
i 2 [n], that Yi � �K := {Yi}� �K is convex by Lemma 4.52. Moreover for
each n 2 N we have that Yi � �K := f [K] is the image of K under the affine
map f : Rd ! R, where f(x) := Yi � �x. Then by Lemma 4.59 we have that
Yi � �K is compact. We then have that

T
n

i=1 (Yi � �K) is finite intersection
of non-empty (containing v), compact convex sets, and is thus a non-empty,
compact convex set. Since it is compact, it is indeed closed and bounded.

4.C.6 Proof of Proposition 4.13

Proposition 4.13 (Sample mean is consistent and unbiased for location). Let
(Yi)

n

i=1 be generated according to Definition 4.4, with � known to the observer.
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The sample mean v :=
1
n

P
n

i=1Yi is a consistent and unbiased estimator of the
location parameter v, regardless of the value of the true scale parameter �.

Proof of Proposition 4.13. Since the centroid (K), is known to the observer,
we assume WLOG per Remark 4.6 that centroid (K) = 0. By Lemma 4.50,
this is equivalent to E (X) = 0. Additionally since K ⇢ Rd is compact, it
is indeed bounded. So we have that E (kXk2) < 1. We first show that the
sample mean v, is a consistent estimator for v as follows:

v :=
1

n

nX

i=1

Yi

=
1

n

nX

i=1

(v + �Xi)

= v + �

 
1

n

nX

i=1

Xi

!

| {z }
p!0, by WLLN

(per Theorem 4.57 and since E (X) = 0)

p! v

Similarly we can show that the sample mean v is an unbiased estimator of the
true location vector v, as below:

E (v) := E
 
1

n

nX

i=1

Yi

!

=
1

n

nX

i=1

(v + �E (Xi))

= v + � (0) (since E (X) = 0)
= v

4.C.7 Proof of Proposition 4.14

Proposition 4.14 (Sample mean is
q

d

n
-consistent). Let (Yi)

n

i=1 be generated
according to Definition 4.4, with � known to the observer. Then the sample
mean estimator, i.e. v, satisfies kv � vk2  � diam (K)

q
d

�n
with probability

at least 1� �.

Proof of Proposition 4.14. Our proof will essentially require an application of
Chebychev’s inequality, though we will need to setup some key definitions
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and notation. We have here that Yi

a.s.
= v + �Xi for each i 2 [n]. Let

e⌃ := V (Yi) 2 Rd⇥d, and Q := e⌃� 1
2 (v � v) =

1
n

P
n

i=1
e⌃� 1

2 (Yi � v) 2 Rd.
Here Q is the scaled-centered version of our sample mean location estimator v.
We then have that E (Q) = 0, and thus V (Q) = E

�
QQ>�. Moreover we have

V (Q) =
1
n
Id. To see this, we observe the following. For E (Q) we first note

that E (Yi � v) = E (�Xi) = �E (Xi) = 0. We then have:

E (Q) = E
 
1

n

nX

i=1

e⌃� 1
2 (Yi � v)

!
(by definition)

= E
⇣
e⌃� 1

2 (Y1 � v)
⌘

(by linearity of expectation, and since Yi are i.i.d.)
= 0 (since E (Y1 � v) = E (�X1) = 0)

As required. Now in the case of V (Q) we proceed as follows.

V (Q) = V
 
1

n

nX

i=1

e⌃� 1
2 (Yi � v)

!
(by definition)

=

✓
1

n2

◆
(n)V

⇣
e⌃� 1

2 (Y1 � v)
⌘

(since Yi are i.i.d.)

=
1

n

⇣
e⌃� 1

2

⌘>
V (Yi � v) e⌃� 1

2

=
1

n

⇣
e⌃� 1

2

⌘> e⌃e⌃� 1
2

=
1

n
Id (4.81)

As required. We also observe that:

E
✓���e⌃� 1

2 (v � v)
���
2

2

◆
= E

⇣
Q>Q

⌘
(by definition of Q.)

= E
⇣
tr

⇣
Q>Q

⌘⌘
(4.82)

= E
⇣
tr

⇣
QQ>

⌘⌘

(by cyclic permutation invariance of trace.)

= tr

⇣
E
⇣
QQ>

⌘⌘
(linearity of trace and expectation.)

= tr (V (Q)) (4.83)

Furthermore, note that diam (K) < 1, and diam (�K) = � diam (K) < 1,
using Lemma 4.63. We then observe that e⌃ = �

2E
�
X1X>

1

�
. It follows that
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w> e⌃w  E
⇣
kX1k22

⌘
. (diam (�K))

2
<1, for all w 2 Sd�1. Additionally we

have that �max

⇣
e⌃
⌘
. (diam (�K))

2
<1.

Now, let "0 > 0, we then have:

P
�
k(v � v)k2 > "

0�
= P

⇣���e⌃
1
2 e⌃� 1

2 (v � v)
���
2
> "

0
⌘

 P
✓���e⌃

1
2

���
op

���e⌃� 1
2 (v � v)

���
2
> "

0
◆

= P
⇣���e⌃� 1

2 (v � v)
���
2
> "

⌘
(where " := "

0
���e⌃

1
2

���
op

)


E
✓���e⌃� 1

2 (v � v)
���
2

2

◆

"2
(by Markov’s inequality)

=
tr (V (Q))

"2
(using Equation (4.83))

=
tr
�
1
n
Id
�

"2
(using Equation (4.81))

=
d

n"2

=
d

n

���e⌃
1
2

���
2

op

("0)2
(using " := "

0
���e⌃

1
2

���
op

)

=
d

n

���e⌃
���
op

("0)2

 d

n

(diam (�K))
2

("0)2

 d

n

(� diam (K))
2

("0)2
(using Equation (4.63).)

It then follows that kv � vk2  � diam (K)

q
d

�n
with probability at least 1��,

as required.

4.C.8 Formal justification for Remark 4.15

In order to justify Remark 4.15, we want to construct a high probability lower
bound for the estimation error, kv � vk2. Given an observation Yi, we denote
its coordinate components as Yi := (Yi1, . . . , Yid)

>, for each i 2 [n]. Now
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WLOG let us consider the first coordinate of v, i.e. [v]1 := v1 =
1
n

P
n

j=1 Y1j .
Similarly let [v]1 := v1 =

1
n

P
n

k=1 v1. We then have by the Paley-Zygmund
inequality:

P
✓
n (v1 � v1)

2
>

1

2
E
⇣
n (v1 � v1)

2
⌘◆
� 1

4

⇣
E
⇣
n (v1 � v1)

2
⌘⌘2

E
⇣
n2 (v1 � v1)

4
⌘ (4.84)

We now focus on each term in the RHS quotient. For the numerator, using
Proposition 4.13 we have that E (v) = v, and thus E (v1) = v1, i.e., v1 is an
unbiased estimator of [v]1. So it follows that:

⇣
E
⇣
n (v1 � [v]1)

2
⌘⌘2

= n
2
⇣
E
⇣
(v1 � [v]1)

2
⌘⌘2

= n
2
(V (v1))

2 (by the bias-variance trade-off.)

=: n
2

 
V
 
1

n

nX

k=1

Y1j

!!2

= n
2 1

n2
(V (Y11))

2

(since Y1j are i.i.d., for each j 2 [n].)

= (V (Y11))
2 (4.85)

> 0 (since Y11 is non-degenerate, so V (Y11) > 0.)

For the denominator, we first observe that:

E
⇣
n
2
(v1 � v1)

4
⌘
= n

2E
⇣
(v1 � v1)

4
⌘

=
n
2

n4
E

0

@
⇣ nX

j=1

(Y1j � v1)

⌘4
1

A

=
1

n2
E

0

@
X

p,q,r,s2[n]

(Y1p � v1)(Y1q � v1)(Y1r � v1)(Y1s � v1)

1

A

(4.86)

Since Y1j are i.i.d., for each j 2 [n], it follows by linearity of expectation, and
unbiasedness of v1, that the expectation in Equation (4.86) is zero, whenever
any single index differs from the others. Moreover the expectation is non-zero
whenever p = q = r = s, and when both pairs of indices match, e.g. p = q, r = s.
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4.C. Proofs of Section 4.2

The number of such cases is of the order n, and n
2, respectively. It then follows

that:

1

n2
E

0

@
X

p,q,r,s2[n]

(Y1p � v1)(Y1q � v1)(Y1r � v1)(Y1s � v1)

1

A (4.87)

⇣ (n)

✓
1

n2

◆
E
�
(Y11 � v1)

4
�
+ (n

2
)

✓
1

n2

◆�
E
�
(Y11 � v1)

2
��2 (4.88)

=
E
�
(Y11 � v1)

4
�

n
+ (V (Y11))

2 (4.89)

We can then substitute Equations (4.85) and (4.86) into Equation (4.84) to
obtain:

P
✓
n (v1 � v1)

2
>

1

2
E
⇣
n (v1 � v1)

2
⌘◆

(4.90)

� 1

4

⇣
E
⇣
n (v1 � v1)

2
⌘⌘2

E
⇣
n2 (v1 � v1)

4
⌘ (4.91)

& 1

4

(V (Y11))
2

E((Y11�v1)4)
n

+ (V (Y11))
2

(4.92)

& 1

4

(V (Y11))
2

(V (Y11))
2
+ (V (Y11))

2

(for sufficiently large n, E((Y11�v1)4)
n

 (V (Y11))
2.)

& 1

8
(4.93)

As required.

4.C.9 Proof of Proposition 4.20

Before proving Proposition 4.20, we need to first prove some mathematical
preliminaries. First we quickly prove (for completeness) the univariate uniform
Pitman location estimator in Proposition 4.73.

Proposition 4.73 (Pitman location estimator for univariate uniform). Let
Xi

i.i.d.⇠ Unif[��,�], with � 2 R>0 known, and let Yi = Xi + v for each i 2 [n],
so that Yi

i.i.d.⇠ Unif[v � �, v + �]. Then the Pitman location estimator, bvpit, for
v, is given by bvpit =

X(1)+X(n)

2 .
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4. uniform location estimation on convex bodies

Proof of Proposition 4.73. This is a standard result, see (Lehmann and Casella,
1998, Example 3.2). To ensure our paper is self-contained we quickly prove the
result here. To do this, we observe that:

bvpit =

R
u

1
(2�)n I

�
X(n) � �  u  X(1) + �

�
du

R
1

(2�)n I
�
X(n) � �  u  X(1) + �

�
du

=

R X(1)+�
X(n)�� udu

R X(1)+�
X(n)�� du

=

1
2

⇣�
X(1) + �

�2 �
�
X(n) � 1

2

�2⌘

X(1) �X(n)

=
X(1) +X(n)

2
(4.94)

As required.

Next prove the tail probability concentration bound for the univariate uniform
Pitman location estimator in Lemma 4.74.

Lemma 4.74 (Risk bounds for the univariate uniform Pitman location esti-
mator). Let � > 0 be known. Assume further that Xi

i.i.d.⇠ Unif[��,�]. And
further that Yi

a.s.
= Xi + v, for each i 2 [n], for some fixed but unknown v 2 R.

Then the Pitman location estimator, bvpit =
X(1)+X(n)

2 satisfies

P (|bvpit � v| > ") 
(
2 exp

�
�n"

2�

�
if " 2 (0, 2�)

0 " � 2�

Proof of Lemma 4.74. First, we observe that the CDF of X ⇠ Unif[��,�] is
given by

FX(x) =

8
><

>:

0 if x < ��
x+�
2� x 2 [��,�]
1 if x > b

(4.95)
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Second, we observe that the general CDFs of i.i.d. minimum and maximum
order statistics are given by:

FX(1)
(x) = 1� (1� FX(x))

n

=

8
><

>:

0 if x < ��
1�

�
��x

2�

�n
x 2 [��,�]

1 if x > �

(4.96)

FX(n)
(x) = (FX(x))

n

=

8
><

>:

0 if x < ���
x+�
2�

�n
x 2 [��,�]

1 if x > �

(4.97)

Now let " > 0 be arbitrary. Since � > 0 is fixed, we first note the following:

��+ " =

(
(��,�) if " 2 (0, 2�)

[�,1) " � 2�
(4.98)

�� " =
(
(��,�) if " 2 (0, 2�)

(�1,��] " � 2�
(4.99)

We can then directly calculate the tail bound as follows:
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P (|bvpit � v| > ") = P
✓����

Y(1) + Y(n)

2
� v

���� > "

◆

= P
✓����

Y(1) � (v � �)
2

+
Y(n) � (v + �)

2

���� > "

◆

(since v =
v��
2 +

v+�
2 )

= P
���Y(1) � v + �+ Y(n) � v � �

�� > 2"
�

= P
���X(1) + �+X(n) � �

�� > "
�

(since Yi
a.s.
= v +Xi, 8i 2 [n])

 P
���X(1) + �

�� > "
�
+ P

���X(n) � �
�� > "

�

(by union bound)
 P

�
X(1) > "� �

�
+ P

�
X(n)  �� "

�

(since X(1) + � � 0 a.s., and X(n) � �  0 a.s.)

=

h
1� FX(1)

("� �)
i
� FX(n)

(�� ")

=

(�
2��"
2�

�n
+
�
2��"
2�

�n if " 2 (0, 2�)

0 " � 2�

=

(
2
�
1� "

2�

�
n if " 2 (0, 2�)

0 " � 2�


(
2 exp

�
�n"

2�

�
if " 2 (0, 2�)

0 " � 2�

(using 1� x  exp(�x), 8x 2 R)

As required.

Now, we can conclude with the proof of Proposition 4.20.

Proposition 4.20 (Projection Estimator for hyperrectangles). Under the
setting of Example 4.18, let the marginal projection estimator, bvrect

marg, be defined

as per (4.9). Then bvrect
marg satisfies

��bvrect
marg � v

��
2


2�k�k2 log
⇣

2d
�

⌘

n
with probability

at least 1� �, where � := (�1, . . . ,�d)
>.

Proof of Proposition 4.20. Let � := (�1, . . . ,�d)
>. Our proof will be based on

applying coordinate-wise union bound on
��bvrect

marg � v
��
2
, and then applying

the univariate uniform Pitman location estimator tail bounds across each
coordinate. This can be seen as follows:
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P
⇣��bvrect

marg � v
��
2
> "

⌘
= P

⇣��bvrect
marg � v

��2
2
> "

2
⌘


dX

k=1

P
 
|b⇡k � vk|2 >

"
2
�
2
k

k�k22

!
(by the union bound.)


dX

k=1

P
✓
|b⇡k � vk| >

"�k

k�k2

◆


dX

k=1

2 exp

✓
� n"�k

2��k k�k2

◆
(using Lemma 4.74.)

= 2d exp

✓
� n"

2� k�k2

◆

It then follows that
��bvrect

marg � v
��
2


2�k�k2 log
⇣

2d
�

⌘

n
with probability at least

1� �, as required.

4.C.10 Proof of Theorem 4.21

Before proving Theorem 4.21, we first need to prove a technical lemma. The
main purpose of Lemma 4.75 is to understand the behavior of a perturbed
univariate density with compact support. Specifically we want to upper bound
the Hellinger distance between the density and it is perturbed counterpart. In
order to bound the Hellinger distance appropriately, we need the univariate
density to satisfy certain tail-decay and Lipschitz properties. These general
conditions, as we will soon see are satisfied in Theorem 4.21 for densities of the
marginal projections of the unit ball.

Lemma 4.75. Suppose g(t) : [a, b]! R>0 is a univariate density with compact
support. For ↵ > 0, let v 2

⇣
0,min

n
1
2 , b� a,

b�a

4 ,
�
b�a

4

�↵o⌘ be a perturbation
value, both to be determined later. We then have the v-perturbed density
g(t + v) : [a � v, b � v] ! R>0, and [a � v, b] = dom (g(t)) [ dom (g(t+ v)).
Consider the partition of this domain:

[a� v, b] := [a� v, a+ v
↵
) t [a+ v

↵
, b� v � v

↵
) t [b� v � v

↵
, b] (4.100)

Let Fg(t) : (�1,1)! [0, 1], denote the CDF of g(t). Now assume further that
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we have the following:

Fg(t)(a+ l) . l
�
, for each l 2 (0, b� a) and a fixed � � 1. (4.101)

1� Fg(t)(b� l) . l
�
, for each l 2 (0, b� a) and a fixed � � 1. (4.102)

p
g(t) is v

��↵-Lipschitz over the domain [a+ v
↵
, b� v � v

↵
).

(4.103)

We then have that (d
H
(g(t), g(t+ v)))

2 . v
2�

�+2� . Where (d
H
(g(t), g(t+ v)))

2

is the squared Hellinger distance between the perturbed densities.

Proof of Lemma 4.75. Suppose we consider a component whose marginal den-
sity is defined on the compact interval [a, b]. Let us denote the marginal density
by g(t) : [a, b]! R>0. We will lower bound the risk of estimating the location
parameter in this univariate density. Specifically consider a the density given
by perturbing (i.e. translating) this random variable by a scalar v 2 R. Let us
denote this perturbed density by g(t+ v) : [a� v, b� v]! R. Here we assume
v 2

�
0,min

�
1
2 , b� a

 �
be a perturbation to be specified later. This is best

visualized in Figure 4.C.1.

Figure 4.C.1: v-perturbed marginal densities (g(t), g(t+ v)) for counterexample

Now consider the squared Hellinger distance between the densities g(t) and
g(t + v) i.e. (d

H
(g(t), g(t+ v)))

2. We then have that (d
H
(g(t), g(t+ v)))

2
=

1�
R1
�1

p
g(t)g(t+ v) dt. However we observe that

(d
H
(g(t), g(t+ v)))

2
= 1�

Z 1

�1

p
g(t)g(t+ v) dt

=
1

2

Z 1

�1

⇣p
g(t) �

p
g(t+ v)

⌘2
dt

200



4.C. Proofs of Section 4.2

In this formulation, the integral is non-zero, over the closed interval [a�
v, b] =: dom (g(t)) [ dom (g(t+ v)), where we assume WLOG that v 2 (0,

1
2).

We are given that ↵ > 0, which will be determined later. Now we can
split this integral over 3 disjoint intervals which form a partition of [a� v, b].
Specifically this partition is I := [a � v, a + v

↵
), II := [a + v

↵
, b � v � v

↵
),

and III := [b � v � v
↵
, b]. Note that the existince of such a partition with

I, II, III being non empty implicitly relies on the fact that a+ v
↵
< b� v � v

↵.
Sufficient conditions to meet this criteria are v

↵
<

b�a

4 and v <
b�a

4 . This
is not a concern, since the application of this lemma gives us control on the
perturbation parameter v and we can always enforce the additional constraints
v 2

⇣
0,min

n
1
2 , b� a,

b�a

4 ,
�
b�a

4

�↵o⌘. Now we have that

(d
H
(g(t), g(t+ v)))

2
=

1

2

Z

I t II t III

⇣p
g(t) �

p
g(t+ v)

⌘2
dt

=: A+B + C

Here A :=
1
2

R
I

⇣p
g(t) �

p
g(t+ v)

⌘2
dt, B :=

1
2

R
II

⇣p
g(t) �

p
g(t+ v)

⌘2
dt,

and C :=
1
2

R
III

⇣p
g(t) �

p
g(t+ v)

⌘2
dt. Now we upper bound each of these

expressions in turn. Firstly we observe that using the identity (a�b)2

2  a
2
+ b

2

for each a, b 2 R, we get the upper bound on the squared Hellinger distance as
(d

H
(g(t), g(t+ v)))

2 
R1
�1 (g(t) + g(t+ v))dt. We then have that

A =
1

2

Z

I

⇣p
g(t) �

p
g(t+ v)

⌘2
dt


Z

I
(g(t) + g(t+ v))dt

=

Z
a+v

↵

a�v

g(t)dt+

Z
a+v

↵

a�v

g(t+ v)dt

=

Z
a+v

↵

a

g(t)dt+

Z
a+v

↵

a�v

g(t+ v)dt

= Fg(t)(a+ v
↵
) + Fg(t+v)(a+ v

↵
) (since Fg(t)(a) = Fg(t+v)(a� v) = 0)

= Fg(t)(a+ v
↵
) + Fg(t)(a+ v + v

↵
)

. v
�↵

+ v
�↵ (per assumption on Fg(t))

. v
�↵ (ignoring lower order terms)

A similar calculation shows that C . v
�↵. More explicitly, this can be seen as
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follows:

C =
1

2

Z

III

⇣p
g(t) �

p
g(t+ v)

⌘2
dt


Z

III
(g(t) + g(t+ v))dt

=

Z
b

b�v�v↵

g(t)dt+

Z
b

b�v�v↵

g(t+ v)dt

=

Z
b

b�v�v↵

g(t)dt+

Z
b�v

b�v�v↵

g(t+ v)dt

= Fg(t)(b)� Fg(t)(b� v � v
↵
) + Fg(t+v)(b� v)� Fg(t+v)(b� v � v

↵
)

= Fg(t)(b)� Fg(t)(b� v � v
↵
) + Fg(t)(b)� Fg(t)(b� v

↵
)

= 1� Fg(t)(b� v � v
↵
) + 1� Fg(t)(b� v

↵
)

. v
�↵

+ v
�↵ (per assumption on Fg(t))

. v
�↵
. (ignoring lower order terms)

Finally given that the integral represented by B is on over the interval II :=

[a + v
↵
, b � v � v

↵
), we are given that

p
g(t) is v

��↵-Lipschitz over II by
assumption. As such it follows that:

B :=
1

2

Z

II

⇣p
g(t) �

p
g(t+ v)

⌘2
dt

 1

2

Z

II

⇣
v
��↵ |t+ v � t|

⌘2
dt (since

p
g(t) is v

��↵-Lipschitz over II)

=
1

2

Z

II

⇣
v
2�2�↵

⌘
dt

= v
2�2�↵

(b� a� v � 2v
↵
)

. v
2�2�↵ (since v, v

↵
> 0)

Thus we have that (d
H
(g(t), g(t+ v)))

2
= A + B + C . v

2�2�↵
+ v

�↵
=

max
�
v
2�2�↵

, v
�↵
 
. Optimizing this over ↵ > 0 and v 2

�
0,min

�
1
2 , b� a

 �
,

occurs when �↵ = 2 � 2�↵. This gives us ↵ =
2

�+2� . It then follows that

(d
H
(g(t), g(t+ v)))

2 . v
2�

�+2� , as required.

4.C.11 Final proof of Theorem 4.21

With Lemma 4.75 proved, we are now ready to prove Theorem 4.21.
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Theorem 4.21 (Lower bound of K = B
3
2(0, R)). Let (Yi)

n

i=1 be generated
according to Definition 4.4. Furthermore, let d = 3, � = 1, and K = B

3
2(0, R) 2

K3. Suppose WLOG we are estimating the first coordinate of the location
parameter, v1. Let W denote the class of all such marginal projection estimators
for v1, as per Definition 4.16. Then there exists some C

0 2 (0, 1) such that the
following holds:

inf
ew2W

sup

v12R
P
⇣
| ew � v1| � (1� C

0
)n

� 3
4

⌘
� C

0 (4.10)

Proof of Theorem 4.21. We can now use this to construct a counterexample in
dimension d = 3, in the case where K = B

3
2(0, R) i.e. the closed Euclidean ball

of radius R, centered at 0.

Figure 4.C.2: 3D Spherical caps along a marginal axis

Here we observe by symmetry that there are always 2 caps projected on a
marginal axis. We denote them by V

neg
cap (H

0
) and V

pos
cap (H). Where H 0 2 [�R, 0)

and H 2 [0, R] as per Figure 4.C.2. Using the well known formulas we have
that V neg

cap (H
0
) =

⇡(H0+R)2

3 (2R�H
0
) and V

pos
cap (H) =

⇡(R�H)2

3 (2R+H). Since
we are sampling uniformly across this sphere, we observe that the probability
of lying in either of these caps is simply the ratio of the volume of the spherical
cap to the volume of the sphere. In our case Vsphere =

4⇡
3 R

3. Denote the
random variable taking values in [�R,R] along the marginal axis by X, when
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sampling uniformly from the given sphere. We then have that F
neg
X

(H
0
) :=

P (X  H
0
) =

V
neg
cap (H0)
Vsphere

and F
pos
X

(H) := P (X  H) = 1� V
pos
cap (H)
Vsphere

. This gives
us the following 2 cases:

F
neg
X

(H
0
) = �H

03

4R3
+

3H
0

4R
+

1

2

F
pos
X

(H) =
1

2
� H

3

4R3
+

3H

4R

That is F pos
X

(H) = F
neg
X

(H) for each H 2 [�R,R]. So the CDF is given by:

FX(H) =

8
><

>:

0 if H < �R
1
2 �

H
3

4R3 +
3H
4R H 2 [�R,R]

1 if H > R

We then have that fX(H) = �3H2

4R3 +
3
4R . We first need to verify that FX(H)

meets the sufficient conditions from Lemma 4.75. First we observe that FX(�R+

l) =
l
2(3R�l)
4R3 = FX(R � l) . l

2, for each l 2 [0, 2R], thus satisfying the first
sufficient condition with � = 2 in Lemma 4.75. We now need to verify the
second (and final) sufficient condition for fX i.e.

p
fX(H) is v

��↵-Lipschitz
over II := [�R+v

↵
, R�v�v

↵
) Lemma 4.75. For notational convenience, let us

denote hX(H) :=

p
fX(H) =

q
�3H2

4R3 +
3
4R . To show that hX(H) is Lipschitz

over II, we just need to show equivalently that the first derivative is bounded
over II. We then have that h

0
X
(H) =

�
p
3H

2R3
q

R2�H2

R3

. Since this is a continuous

decreasing function in H for H 2 II. We can bound it by considering the value
at H = �R+ v

↵. We then have that

��h0X(�R+ v
↵
)
�� =

p
3 (R� v

↵
)

2

p
R3v↵(2R� v↵)


p
3R

2

p
R4v↵

(since 0 < v
↵  R =) 2R� v

↵ � R)

. 1p
v↵

= v
� 1

2↵

As such v
� 1

2↵ represents an upper bound on the Lipschitz constant for
h
0
X
(H) over II. So indeed hX v

��↵-Lipschitz over II := [�R + v
↵
, R� v � v

↵
),
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with � =
1
2 as required for Lemma 4.75. Since both sufficient conditions are

for Lemma 4.75 to hold are satisfied by
p
fX(H) for H 2 [�R,R] we have

that (d
H
(g(t), g(t+ v)))

2 . v
2�

�+2� = v
4
3 , as required. Suppose WLOG we are

estimating the first coordinate of the location parameter, v1. Let ew be any
such marginal projection estimator for v1, projected in any direction and based
on n observations. We can apply Le Cam’s two-point method (on n observed
samples), as per Lemma 4.100, to this process as follows:

inf
ew2R

sup

v12R
P (| ew � v1| � v) �

✓
1� 1

2
d
TV

�
g(t)

⌦n
, g(t+ v)

⌦n
�◆

�
✓
1� 1

2
d
H

�
g(t)

⌦n
, g(t+ v)

⌦n
�◆

� 1�
p
n d

H
(g(t), g(t+ v))

Now note that d
H
(g(t), g(t+ v))  v

2
3 . Setting 1�

p
n v

2
3 = C

0 2 (0, 1) =)
v = (1� C

0
)
3
2n

� 3
4 . It then follows directly that

inf
ew2R

sup

v12R
P
⇣
| ew � v1| � (1� C

0
)
3
2n

� 3
4

⌘
� C

0

Which indeed shows that we have a worse than n
�1 rate for estimation of an

individual coordinate the location parameter, and certainly for all coordinates
in this specific setting.

Remark 4.76. It is instructive to understand why the marginal projection
estimator fails to give the n�1 rate when K is the closed three dimensional closed
euclidean ball, compared to the case where K is an axis-aligned hyperrectangle.
In the case of the axis-aligned hyperrectangle, we observe that projecting along
each marginal axis, the resulting marginal projected density is bounded strictly
away from zero at the boundary points. In the case of the Euclidean ball,
we find that each of the projected marginal densities decays to zero at both
boundary points. The use of the Euclidean ball as a counterexample has the
added property in that it is rotation invariant. As such the marginal projections
will have this same boundary decay issue for the marginal projection in any
direction.

4.C.12 Proof of Proposition 4.22

Proposition 4.22 (Projection Estimator Motivation). Let (Yi)
n

i=1 be generated
according to Definition 4.4, with � known to the observer. Let v :=

1
n

P
n

i=1Yi
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denote the sample mean, and bvprj = ⇧T
n

i=1(Yi��K)(v) denote the projection
location estimator. Then for any z 2

T
n

i=1 (Yi � �K) we have:

kv � zk2 � kbvprj � zk2 a.s. (4.12)

Proof of Proposition 4.22. We note that the critical set
T

n

i=1 (Yi � �K) is a
non-empty, closed convex set per Proposition 4.8. Since bvprj is by definition a
euclidean projection onto the critical set, the required result then follows from
a direct application of Theorem 4.48.
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4.D Proofs of Section 4.3

4.D.1 Proof of Theorem 4.25

Mathematical Preliminaries

Since K 2 Kd with a centroid (K) = 0 2 int (K), it follows that there is a
ball centered at 0 which is a proper subset of K. We also have the following
important fact of the Lipschitz property of Minkowski gauge functionals on
convex bodies as detailed in Theorem 4.77.

Theorem 4.77 (Minkowski Gauge Functionals are Lipschitz). Let K be a
closed, convex set with 0 2 int (K). Then the Minkowski gauge functional
⇢K : Rd ! [0,1) is G-Lipschitz continuous on Rd with the constant

G := inf

⇢
1

r

����B
d

2(0, r) ⇢ K, r > 0

�
(4.104)

In particular, we have ⇢K(x)  G kxk2 for all x 2 Rd.

Proof of Theorem 4.77. See (Mordukhovich and Nam, 2014, Proposition 3.32)
for details.

Final proof of Theorem 4.25

Theorem 4.25 (Minimum is attained in the MLEs). The MLEs for v and � as
given by bvMLE 2 argmin⌧2Rd maxi2[n] ⇢K(Yi�⌧ ), and b�MLE := min⌧2Rd maxi2[n] ⇢K(Yi�
⌧ ), respectively, both exist.

Proof of Proposition 4.27. We begin by proving our claim that the infimum
above is actually a minimum. Since K 2 Kd with a centroid (K) = 0 2 int (K),
it follows from Theorem 4.77 that the Minkowski gauge functional of K, ⇢K(x),
is a Lipschitz map. Per Lemma 4.61 the pointwise maximum of a finite collection
of Lipschitz functions preserves Lipschitzness. As such, for each n 2 N, it
follows that as maxi2[n] ⇢K(Yi � ⌧ ) is continuous. As long as we show that we
should search for ⌧ in a compact set this will show the minimum is achieved.
Now we note that

inf
⌧2Rp

max
i2[n]

⇢K(Yi � ⌧ )  max
i2[n]

⇢K(Yi),

with the latter quantity being bounded. Now ⇢K(Yi � ⌧ ) � ⇢K(⌧ )� ⇢K(Yi).
It follows that if ⇢K(⌧ ) > 2maxi ⇢K(Yi) we have that

max
i

⇢K(Yi � ⌧ ) > max
i

⇢K(Yi) � inf
⌧2Rp

max
i2[n]

⇢K(Yi � ⌧ ),
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which means that such ⌧ cannot achieve the inf. It follows that one should
search for ⌧ only in the set ⇢K(⌧ )  2maxi ⇢K(Yi). But K is compact hence
the latter is a compact set, therefore completing the proof.
The next claim is that the value of the above problem coincides with b�, while
b⌧ which achieves the minimum is a point in the set

T
n

i=1 (Yi � b�K). Let e�
denote the value of the new optimization problem. By the fact that K is closed
it follows that Yi � ⌧ 2 e�K for all i, which implies that

T
n

i=1 (Yi � e�K) 6= ;.
So e� � b�. On the other hand suppose that b� < e�. It follows by the definition
of e� that there does not exist a ⌧ such that max ⇢K(Yi � ⌧ )  (b� + e�)/2,
and therefore the set

T
n

i=1 (Yi � (b� + e�)/2K) = ;. This is a contradiction
with the definition of b�. Thus it has to be the case that b� = e� and thereforeT

n

i=1 (Yi � b�K) 6= ;.

4.D.2 Proof of Proposition 4.27

Proposition 4.27 (Location MLE is contained in the critical set). Since
0 < b�MLE  � and 0 2 int (K) (per Remark 4.6), we have that

n\

i=1

(Yi � b�MLEK) ✓
n\

i=1

(Yi � �K)

Proof of Proposition 4.27. Since 0 < b�MLE  �, we have that:

(Yi � b�MLEK) ✓ (Yi � �K) (8 i 2 [n], using Lemma 4.54)

=)
n\

i=1

(Yi � b�MLEK) ✓
n\

i=1

(Yi � �K)

As required.
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4.E Proofs of Section 4.4

4.E.1 Proof of Theorem 4.28

As noted, Theorem 4.28 provides upper bounds for the risk of our projection
estimator in the case where K 2 Kd is restricted to the class of convex polytopes.
The literature on convex polytopes is vast, e.g., see (Goodman et al., 2018,
Chapter 15). In order to keep our proof of Theorem 4.28 largely self-contained
we first provide the minimal necessary convex polytope theory in Section 4.E.1.

Required convex polytope theory

Definition 4.78 (Convex Polytope). A convex polytope K ⇢ Rd is a bounded
subset which is the intersection of a finite number halfspaces.

Remark 4.79. Throughout our paper we will always assume that a convex
polytope, say K ⇢ Rd is in fact a convex body polytope, i.e. K 2 Kd. Thus we
assume in addition to Definition 4.78 that K has a non-empty interior.

Definition 4.80 (V-representation of a Polytope). A V-representation of a
convex polytope, K ⇢ Rd is the convex hull of a finite set X = {x1, . . . ,xn} of
points in Rd

K = co (X) :=

(
nX

i=1

�ixi

������1, . . . ,�n � 0,

nX

i=1

�i = 1

)
. (4.105)

Definition 4.81 (H-representation of a Polytope). An H-representation of
a convex polytope K ⇢ Rd, is the solution set of a finite system of linear
inequalities,

K := [A | b] :=
n
x 2 Rd

���a>k x  bk, 8 k 2 [m]

o
, (4.106)

with the extra condition that the set of solutions is bounded, that is, such
that there is a constant M > 0 such that kxk  M holds for all x 2 K. If
this boundedness condition is removed, we say that K is a convex polyhedron
instead. Here A 2 Rm⇥d is a real matrix with rows a>

k
:= (ak1, . . . , akd) 2 R1⇥d,

and b := (b1, . . . , bm)
> 2 Rm. We say that a polytope K has a minimal H-

representation, if every inequality in Equation (4.106) is irredundant. That is,
removing any inequality from the H-representation would violate Definition 4.78.
Such a minimal H-representation is unique (up to ordering and scaling).
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Remark 4.82. We note that since centroid (K) = 0 2 int (K), that ak 6= 0 and
bk 6= 0 for each k 2 [m] i.e. none of the supporting hyperplanes of K pass
through 0.

Lemma 4.83 (H-representation of a Polytope under affine transformations).
Let K 2 Kd be a convex polytope per Definition 4.78 with (minimal) H-
representation K := [A | b]. Further, for any fixed ↵ > 0, c 2 Rd, we
have that �↵K + c, and ↵K + c are both convex polytopes. Moreover they have
following respective H-representations:

�↵K + c = [�A | �Ac+ ↵b] (4.107)
↵K + c = [A | Ac+ ↵b] (4.108)

Proof of Lemma 4.83. We prove each of properties specified in Equations (4.107)
and (4.108) in turn.

(Proof of Equation (4.107)). To see this firstly note that K := [A | b] is
the minimal H-representation of K. We then proceed as follows:

Let w 2 �↵K + c

() w = �↵k+ c (for some k 2 K.)

() k = �w � c

↵
(since ↵ > 0.)

() A

✓
�w � c

↵

◆
 b (since k 2 K () Ak  b.)

() �Aw +Ac  ↵b (since ↵ > 0.)
() �Aw  �Ac+ ↵b

() w 2 [�A | �Ac+ ↵b]

Which indeed proves Equation (4.107). This shows that �↵K + c is a convex
polyhedron, given that it has the H-representation [�A | �Ac + ↵b]. To
prove that it is a polytope, we need to show that it is bounded. But from
Lemma 4.59, �↵K + c is in fact compact, and thus bounded, as required. ⌅

(Proof of Equation (4.108)). The proof is almost identical to the proof of
Equation (4.107). The main change is to replace the line:

k = �w � c

↵
, with k =

w � c

↵
, (4.109)

and continue the proof as before. ⌅
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Thus all properties specified in Equations (4.107) and (4.108) are now proved.

Theorem 4.84 (Dual representation of a Polytope). The definitions of V-
polytopes and of H-polytopes are equivalent. That is, every V polytope has
a description by a finite system of inequalities, and every H-polytope can be
obtained as the convex hull of a finite set of points (its vertices).

Proof. See (Ziegler, 1995, Section 1.1) for details.

Lemma 4.85. Every convex polytope K ⇢ Rd with a non-empty interior is a
convex body i.e. K 2 Kd.

Proof. Suppose K ⇢ Rd is a convex polytope with a non-empty interior. By
Theorem 4.84 and Definition 4.80, K has a V-representation as a convex hull
of a finite set of points (vertices). Given that this vertex set is finite, it is
indeed compact in Rd. Since taking the convex hull of a compact set preserves
compactness (Brøndsted, 1983, Theorem 2.8), it follows that K is compact.
We also have by assumption that K has a non-empty interior. Thus K meets
the required criteria from Definition 4.41 to be a convex body i.e. K 2 Kd.

Definition 4.86 (Facets of Polytopes). A face of a polytope P is the intersec-
tion of P and the boundary hyperplane of a halfspace containing P. A facet of
P is an inclusion-wise maximal face distinct from P . Equivalently, a face F of
P is a facet if and only if dim(F ) = dim(P )� 1.

In what follows, we will assume that K has a minimal H-representation
(unique up to ordering and scaling) given by [A | b]. In this representation
we assume that K is described by m facets i.e. {F1, . . . , Fm} for some fixed
m 2 N. By Definition 4.81 we know that such an m is guaranteed to be finite.
Here each facet Fm is reduced to a subset of a single (irredundant) inequality
in [A | b].

Lemma 4.87 (Pulling Triangulation of Polytope). Given a minimal facet
representation of a convex (body) polytope K ⇢ Kd, assuming a fixed x⇤ 2
int (K) and having facets {F1, . . . , Fm} ,m 2 N, we can subdivide K via the
pulling triangulation construction:

K =

[

k2[m]

co (Fk [ {x⇤})
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Proof of Lemma 4.87. See (De Loera et al., 2010, Section 4.2.2) for details.

Remark 4.88. In this case K is triangulated into m convex polytopes PFk,x⇤ :=

co (Fk [ {x⇤}) which are in fact all pyramids associated with a facet Fk as the
base and all having a common apex vector x⇤ 2 int (K), for each k 2 [m].

Lemma 4.89 (Shortest distance from vector to hyperplane). Given a fixed point
x⇤ 2 Rd, and a hyperplane Ha,b :=

�
x 2 Rd

��a>x+ b = 0,a 6= 0, b 6= 0
 
⇢ Rd,

the shortest distance from x⇤ to Ha,b is |a>x⇤+b|
kak .

Proof of Lemma 4.89. We approach this distance minimization using Lagrange
multipliers. Consider the Lagrangian L(x,�) := kx� x⇤k2 + �(a>x+ b). We
then have rxL(x,�) = 2(x� x⇤

) + �a. By setting rxL(x,�) = 0 we have

�a = 2(x⇤ � x) (4.110)

From Equation (4.110) implies 2 additional equations, first by applying the dot
product with a we have:

� =
2a>(x⇤ � x)

kak2
(4.111)

Second, we can apply the dot product with (x⇤ � x) to give:

2(x⇤ � x)>(x⇤ � x) = �(x⇤ � x)>a

=) 2 kx⇤ � xk2 =
✓
2a>(x⇤ � x)

kak2

◆
(x⇤ � x)>a

= 2

�
a>(x⇤ � x)

�2

kak2

=) kx⇤ � xk =
��a>x⇤

+ b
��

kak

As required.

Lemma 4.90. Every internal pyramid, co (Fk [ {0}) ⇢ Rd
, 8 k 2 [m], of a

triangulated convex polytope K (per Lemma 4.87) has a positive volume i.e.
vold (co (Fk [ {0})) > 0 for each k 2 [m].

Proof of Lemma 4.90. We note that a volume of a pyramid in Rd is given by
Ah

d
(see (Mathai, 1999, Theorem 1.2.10)). Here A is the area of the base

of the pyramid and h is the distance of the orthogonal projection from the
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apex of the pyramid to the base. In our case consider an arbitrary pyramid
co (Fk [ {0}) with facet Fk as its base. Now facet Fk contains an interior point
in dimension d� 1 (see (Gallier and Quaintance, 2008, Proposition 4.5(ii)) for
details). Indeed by Lemma 4.42 it follows that vold�1 (Fk) > 0. Since Fk lies
in the hyperplane defined by the equality a>

k
x = bk. We have that the distance

h from 0 to Fk is given by h =
|bk|
kakk by Lemma 4.89. Since ak 6= 0 and bk 6= 0

(by Remark 4.82) we have that h > 0 in our setting. As such we have that the
pyramid co (Fk [ {0}) has positive volume, for each k 2 [m].

Convex Polytopes - mathematical preliminaries

With this preliminary theory of convex polytopes setup, we now proceed to
derive an upper bound in the mean squared error for our projection estimator
(per Proposition 4.22)

bvprj := argmin

w2
T

n

i=1(Yi��K)
kv �wk22

In this case the given original convex body, K 2 Kd is assumed to be
a convex polytope with centroid (K) = 0 2 int (K) by Theorem 4.56. The
location-scaled convex polytope (with non-empty interior) is then v + �K.
However given the translation invariance of the Lebesgue measure in Rd, in
what follows we can recenter our polytope by translation �v. We denote this
translated polytope by P := �K, so that centroid (P ) = 0. Our observed
sample points Yi are thus translated to be Zi := Yi � v, 8 i 2 [n], where
Zi

i.i.d.⇠ Unif[P ] by Lemma 4.51.
Now we generate a sequence of similar11 polytopes to P by applying an

increasing scaling sequence (1� ↵n)
1
n=1 to P . Here ↵n 2 (0, 1) for each n 2 N,

such that (↵n)
n!1���! 0, is a decreasing scaling sequence to be determined later.

This sequence of (1� ↵n)-scaled polytopes is denoted by P := ((1� ↵n)P )
1
n=1.

We further observe that for each n 2 N, that (1� ↵n)P ⇢ P (by Lemma 4.54),
and that P is in fact a sequence of monotonically increasing nested polytopes
in P .

In what follows, per Definition 4.81 we will assume that P has a minimal
H-representation (unique up to reordering and scaling) given by [A | b]. In
this representation we further assume that P is described by m facets i.e.
{F1, . . . , Fm} for some fixed m 2 N. By Definition 4.81 we know that such an
m is guaranteed to be finite. Here each facet Fm is reduced to a subset of a
single (irredundant) inequality in [A | b].

11Here similar means that we have a dilated (similar) version of the polytope P , scaled by
the factor 1�↵n. Note that since 0 2 int (P ), this follows per Lemma 4.54 and Remark 4.55.
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By Lemma 4.87 we observe that we can triangulate P as a finite union
of m pyramids, as P =

S
k2[m] co (Fk [ {0}). We denote the pyramid with

facet Fk as its base (and 0 as its apex) by PFk,0 := co (Fk [ {0}). For each
such pyramid PFk,0 we induce the boundary facet shell Sk as defined by Sk :=

PFk,0 \ (1 � ↵n)PFk,0. For clarity these decompositions are geometrically
illustrated for a sample polygon P ⇢ R2 in Figure 4.E.1. With this constructive
set up complete, we are ready to state and prove Lemma 4.91. This demonstrates
that if we sample points uniformly i.i.d. on P , we will always sample from Sk,
i.e., a single boundary facet shell of P , with positive probability depending on
↵n.

Lemma 4.91. Suppose that we independently uniformly sample points from
P , with Sk := PFk,0 \ (1�↵n)PFk,0, denoting the k

th boundary facet shell of P .
Then the probability of sampling from Sk, i.e., PSk

, is strictly bounded away
from {0, 1}. That is, for each k 2 [m] we have:

PSk
:= P (sampling from Sk, after sampling uniformly from P ) 2 (0, 1)

(4.112)

Proof of Lemma 4.91. Let PSk
be defined per Equation (4.112). We then

observe that

PSk
=

vold (Sk)

vold (P )
(since we are uniformly i.i.d. sampling from P .)

=
vold (PFk,0)� vold ((1� ↵n)PFk,0)

vold (P )

(since Sk := PFk,0 \ (1� ↵n)PFk,0.)

=
vold (PFk,0)� (1� ↵n)

d
vold (PFk,0)

vold (P )

=
vold (co (Fk [ {0}))� (1� ↵n)

d
vold (co (Fk [ {0}))

vold (P )

(since PFk,0 := co (Fk [ {0}).)

=

✓
vold (co (Fk [ {0}))

vold (P )

◆⇣
1� (1� ↵n)

d

⌘

We then define the following constants:

cmin := min
k2[m]

⇢
vold (co (Fk [ {0}))

vold (P )

�
=: min

k2[m]

⇢
vold (PFk,0)

vold (P )

�
(4.113)

cmax := max
k2[m]

⇢
vold (co (Fk [ {0}))

vold (P )

�
=: max

k2[m]

⇢
vold (PFk,0)

vold (P )

�
(4.114)
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By construction, recall that P =
S

k2[m] co (Fk [ {0}), i.e., the PFk
form a finite

subdivision of P . As such the minimum and maximum values are attained as
defined by cmin and cmax, respectively. Moreover, by Lemma 4.90 it holds that
co (Fk [ {0}) > 0, for each k 2 [m]. It follows that that cmin and cmax are both
strictly positive. Given that ↵n 2 (0, 1) for each n 2 N, then for each k 2 [m],
the probabilities PSk

satisfy:

0 < cmin

⇣
1� (1� ↵n)

d

⌘
 PSk

 cmax

⇣
1� (1� ↵n)

d

⌘
< 1, (4.115)

And thus the PSk
are always bounded away from {0, 1} for each k 2 [m], as

required.

Remark 4.92. Note that cmin  1
m

in Lemma 4.91. To see this, first note that by
construction that P =

S
k2[m] co (Fk [ {0}) =) vold (P ) =

P
m

k=1 vold (PFk,0).
Then observe that:

cmin =: min
k2[m]

⇢
vold (PFk,0)

vold (P )

�
 1

m

mX

k=1

vold (PFk,0)

vold (P )
=

1

m

✓
vold (P )

vold (P )

◆
=

1

m
.

(4.116)
As required.

We have thus established that if we sample points uniformly i.i.d. on P , we
will always sample from Sk, i.e., a single boundary facet shell of P , with positive
probability depending on ↵n. Using this result, we now turn our attention to
computing the probability of uniformly sampling at least one point from each
facet shell of P . This probability depends on appropriately setting the values
for the decreasing sequence (↵n)

1
n=1, as defined earlier. This is summarized in

Lemma 4.93.

Lemma 4.93. After uniformly sampling n points from P , let Tk denote the
number of these points that are sampled within each boundary facet shell Sk,
for each k 2 [m]. Then the probability of uniformly sampling at least one point

from each facet shell Sk of P , is at least 1 � � 2 (0, 1) if ↵n =
log

⇣
m

�

⌘

cminn
. Or

alternatively, we can write:

P
 

m\

k=1

{Tk � 1}
!
� 1� �, if ↵n =

log

⇣
m

�

⌘

cminn
(4.117)

Proof of Lemma 4.93. Firstly, per Lemma 4.91 we observe that the proba-
bilities PSk

2 (0, 1), for each k 2 [m], n 2 N. Furthermore we have that
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1� (1� ↵n)
d � 1� (1� ↵n) = ↵n for each ↵n 2 (0, 1) and d � 1. From Equa-

tion (4.115) this implies that PSk
� cmin↵n for each k 2 [m], n 2 N. We now

observe that sampling each Zi

i.i.d.⇠ Unif[P ] induces a multinomial distribution
on the (m+1) “bins”, with the first m bins being the m boundary facet shells of
P , i.e., (S1, . . . , Sm) with corresponding sampling probabilities (PS1 , . . . ,PSm

).
The final (m + 1)

th bin then being the inner scaled polytope (1 � ↵n)P de-
noted by Sm+1 := P \

S
k2[m] Sk with the complementary sampling probability

1�
P

m

k=1 PSk
. That is for each i 2 [n], Zi

i.i.d.⇠ Unif[P ] induces an i.i.d. multi-
nomial sample (T1, . . . , Tm)

> ⇠ Multi[n, (PS1 , . . . ,PSm
, 1�

P
m

k=1 PSk
)
>
]. From

this we observe that:

P
 

m[

k=1

{Tk = 0}
!


mX

k=1

P (Tk = 0) (by union bound.)

=

mX

k=1

(1� PSk
)
n (since P (Tk = 0) = (1� PSk

)
n.)

 m(1� min
k2[m]

PSk
)
n

 m(1� cmin↵n)
n

(since PSk
� cmin↵n for each k 2 [m], n 2 N)

 m (exp (�cmin↵nn))

(since E ((�x) � 1� x), for each x 2 R.)

It then follows that:

P
 

m\

k=1

{Tk � 1}
!

= 1� P
 

m[

k=1

{Tk = 0}
!

� 1�m (exp (�cmin↵nn))

=: 1� � 2 (0, 1)

() ↵n =

log

⇣
m

�

⌘

cminn
,

So indeed P (
T

m

k=1{Tk � 1}) � 1� �, if ↵n =
log

⇣
m

�

⌘

cminn
, as required.

Since we are sampling uniformly and from finitely many such shells, we will
eventually sample at least one point from each of them. We can now construct
a new sequence of polytopes P 0 := (�↵nP )

1
n=1. Now consider the ray starting

at 0 and passing through Zi. Let Fi be the corresponding facet to intersect this
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ray, where i 2 [m]. We observe that each facet Fi ✓
�
x 2 Rd

��aT
i
x  bi

 
, for

each i 2 [m] by the H-representation of P . For every such inequality we simply
rescale and reverse it by �↵n i.e. aT

i
x � �↵nbi. We claim that this results in

the new minimal polytope [�A | ↵nb], and formalize it in Proposition 4.94.

Proposition 4.94. Let P := [A | b] be the minimal H-representation of P .
Then �↵nP = [�A | ↵nb], where �↵nP := {�↵nz | z 2 P}. Moreover �↵nP

is a convex polytope.

Proof of Proposition 4.94. To see this firstly note that P := [A | b] is the
minimal H-representation of P . Now, for each n 2 N, with ↵n 2 (0, 1), it
follows directly from Lemma 4.83 that �↵nP = [�A | ↵nb], and moreover that
it is indeed a convex polytope, as required.

Figure 4.E.1: (Left) Triangulation of P . (Right) Decomposition of pyramid PFk,0

Proposition 4.95 (Critical set is a subset of �↵nP + v). We have that for
every n 2 N that the critical set,

T
n

i=1 (Yi � �K) is a subset of the dilated and
shifted enveloping polytope �↵nP + v, for each n 2 N, with high probability.
That is, for each n 2 N we have:

n\

i=1

(Yi � �K) ✓ �↵nP + v, (4.118)

with probability at least 1� �, for � 2 (0, 1), if ↵n =
log

⇣
m

�

⌘

cminn
.
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Proof of Proposition 4.95. Let P := [A | b] be the minimal H-representation
of P . We then have:

P =

m\

k=1

n
z 2 Rd

���a>k z  bk

o
. (4.119)

Let Zi

i.i.d.⇠ Unif[P ], for each i 2 [n]. Further let � 2 (0, 1), and ↵n =
log

⇣
m

�

⌘

cminn
.

Then from Lemma 4.93, we have with probability at least 1� �, that at least
one point is sampled from each boundary facet shell Sk := PFk,0 \ (1�↵n)PFk,0.
Let us denote Zk to be such a sampled point from Sk, for each k 2 [m]. We
then have that Zk satisfies the following inequalities using the H-representation
of P :

(1� ↵n)bk  a>
k
Zk  bk. (4.120)

Now note that
T

n

i=1 (zi � �K) ✓
T

m

k=1 (Zk � �K). It suffices to show thatT
m

k=1 (Zk � �K) :=
T

m

k=1 (Zk � P ) ✓ �↵nP , or alternatively that Zk � P ✓
�↵nP , for each k 2 [m]. For each k 2 [m], per Equation (4.119) we have the
equivalence

P ⇢
n
z 2 Rd

���a>k z  bk

o
() �P ⇢

n
z 2 Rd

���a>k z � �bk

o
. (4.121)

We then proceed as follows, for each k 2 [m].

Zk � P := {Zk}+ (�P ) (by definition.)

⇢ {Zk}+
n
x 2 Rd

���a>k x � �bk

o
(using Equation (4.121))

=

n
x 2 Rd

���a>k (x� Zk) � �bk

o
(4.122)

=

n
x 2 Rd

���a>k x � a>
k
Zk � bk

o

⇢
n
x 2 Rd

���a>k x � (1� ↵n)bk � bk

o
(using Equation (4.120))

=

n
x 2 Rd

���a>k x � �↵nbk

o

= �↵nP (4.123)

We have thus shown that, for each n 2 N:

n\

i=1

(Zi � �K) ✓ �↵nP (4.124)
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Now in order to show Equation (4.118), we observe that:

y 2
n\

i=1

(Yi � �K)

() y 2 Yi � P, for each i 2 [n] (since P := �K.)

() y 2 (Zi + v)� P, for each i 2 [n] (since Yi

a.s.
= Zi + v.)

() y 2 (Zi � P| {z }
2�↵nP

) + v, for each i 2 [n]

() y 2 �↵nP + v

As required.

Final proof of Theorem 4.28

Theorem 4.28 (Consistency of location estimators in the critical set, K 2 Kd

polytope.). Let (Yi)
n

i=1 be generated according to Definition 4.4. Further
assume that K 2 Kd is a convex polytope with m facets. Let bvcri denote any
location estimator lying in the critical set, i.e. bvcri 2

T
n

i=1 (Yi � �K) a.s. We
then have that bvcri satisfies kbvcri � vk2  �↵n(diam (K)), with probability at

least 1� � 2 (0, 1), if ↵n =
log

⇣
m

�

⌘

cminn
. Here cmin  1

m
, is a constant that depends

on the convex body K.

Proof. Using the facts from Lemma 4.63, and the fact that both v, bvprj 2
T

n

i=1 (Yi � �K) a.s., the following holds with probability �, and ↵n =
log

⇣
m

�

⌘

cminn
:

kbvprj � vk2  diam

 
n\

i=1

(Yi � �K)

!
(using Equation (4.61))

 diam (�↵nP + v)
(using Proposition 4.95, and Equation (4.62))

= |↵n| (diam (P )) (using Equations (4.62) and (4.64))
= �↵n(diam (K)) (using Equation (4.62), and �,↵n > 0.)

So that kbvprj � vk2 ! 0 at rate �↵n as defined previously.

4.E.2 Proof of Theorem 4.29

Mathematical preliminaries

As noted, Theorem 4.29 provides upper bounds for the risk of our projection
estimator in the case where K 2 Kd is a general convex body. In order to
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keep our proof of Theorem 4.28 largely self-contained we first provide the
minimal necessary convex body theory in below, before describing our proof in
Section 4.E.2. We now observe the following simple proposition.

Proposition 4.96 (A convex body is properly nested between 2 Euclidean
balls). For every convex body P 2 Kd, with centroid (P ) = 0, there exist
0 < r < R such that:

B
d

2(0, r) ⇢ P ⇢ B
d

2(0, R) (4.125)

Proof of Proposition 4.96. Since it follows that centroid (P ) = 0 2 int (P ) (by
Theorem 4.56), we know there exists some r > 0 such that Bd

2(0, r) ⇢ P . Since
P is a convex body, it is bounded and there also exists an R > 0 such that
P ⇢ B

d

2(0, R). By Jung’s Theorem (see (Jung, 1901, 1910), and (Leonard
and Lewis, 2016, Theorem 4.3.36) for a proof), such a radius R is guaranteed
by fixing R > diam (P )

q
d

2(d+1) . In sum we have B
d

2(0, r) ⇢ P ⇢ B
d

2(0, R),
where all subset inclusions are proper, as required.

A simple representation of this general convex body setting is shown for
the case where P ⇢ R2 is an ellipse in Figure 4.E.2.
Remark 4.97. e note that in the proof and discussion that follows we do not
impose any additional conditions on the convex body P (e.g. symmetric, or
smoothness) other than centroid (P ) = 0, and satisfying Definition 4.41.

Uniform sampling from closed Euclidean balls

We start with a simple question, namely how do we sample uniformly within the
d-dimensional Euclidean closed unit ball (i.e., including boundary and interior),
B

d

2(0, 1) ⇢ Rd? This can be done by first generating a direction by uniformly
sampling on the surface of the unit ball. One procedure to generate this
direction unit vector is by sampling an isotropic Gaussian vector g i.i.d.⇠ N (0, Id)
and normalizing it i.e. g

kgk2
per (Muller, 1959).

Then one can independently sample a radius X 2 [0, 1] with cumulative
density function FX(x) = x

d. The latter can be done by first uniformly
sampling U ⇠ Unif[0, 1], and then taking U

1
d as the radius. Similarly, if we

want to uniformly sample from the radius-R ball, i.e., Bd

2(0, R) ⇢ Rd, we again
generate a direction uniformly on the surface of the and then we generate a
radius X 2 [0, R] independently with cumulative density function FX(x) =

x
d

Rd
.

For more details on the above uniform sampling procedures we refer the reader
to (Harman and Lacko, 2010), (Fishman, 1996, Section 3.29), and (Blum et al.,
2020, Section 2.5).
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Figure 4.E.2: Geometric view for a general (elliptical) convex body P = �K ⇢ R2

Uniform sampling from convex bodies

Next, how can we perform uniform sampling in the convex body P? We
know by Proposition 4.96 that there exist 0 < r < R such that B

d

2(0, r) ⇢
P ⇢ B

d

2(0, R). A natural approach is to use acceptance-rejection sampling.
Using the methodology described in Section 4.E.2, we can sample a vector in
B

d

2(0, R). If the vector happens to be in P ⇢ B
d

2(0, R) we accept it, and we
reject it if is not not in P . Next, we generate a point uniformly distributed
in the boundary shell set of P i.e. SP,↵n

:= P \ (1 � ↵n)P . Here we assume
that ↵n 2 (0, 1) for each n 2 N. We will later select (↵n)

1
n=1 as a decreasing

sequence such that ↵n =
n

n
, where n ! 1 and n = o (n). Once again,

we can use acceptance-rejection sampling. We proceed by sampling a vector
uniformly over B

d

2(0, R). If the vector belongs to the boundary shell set SP,↵n

we accept it, and reject it otherwise. We let y denote the length of the segment
along the unit-norm random direction g

kgk2
which connects 0 with the boundary

of P . That is y is defined such that y
g

kgk2
2 @(P ). Thus the length y is lower

bounded by r since B
d

2(0, r) ⇢ P is a proper inclusion (from Proposition 4.96).
Now, since the radius has cdf x

d

Rd
, the probability that we will accept a point
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belonging to the boundary shell set SP,↵n
is given by:

y
d � (1� ↵n)

d
y
d

Rd
=

y
d

Rd

⇣
1� (1� ↵n)

d

⌘

� y
d

Rd
(↵nd) (By reverse Bernoulli inequality)

>
r
d

Rd
(↵nd) (since y > r for all such y)

Hence, to find points that belong to the boundary shell set SP,↵n
, we can gener-

ate uniform vectors uniformly in all directions, and then accept with probability
at least r

d
↵nd

Rd
. Hence by potentially discarding with a certain probability some

of the accepted points, we may assume that the probability of accepting a
direction equals precisely to r

d
↵nd

Rd
and is independent of where the direction

has landed. Now the n i.i.d. sampling directions follow a Binom
⇣
n,

r
d
↵nd

Rd

⌘

distribution i.e. binomial distribution with n trials and success probability
r
d
↵nd

Rd
.

This is so since each independently sampled direction has at least a probability
of r

d
↵nd

Rd
of being accepted. The mean of this distribution is r

d

2Rd
(n↵nd). By the

Chernoff bound on the binomial we have P (number of accepted points  k) 
exp

⇣
� 1

2p

⇣
(np�k)2

n

⌘⌘
= exp(�np

8 ), where k =
r
d

2Rd
(n↵nd), p =

r
d

Rd
(↵nd). By

the choice of ↵n this will happen with high probability. Let us denote the
sequence of m sampled (unit) direction vectors which are accepted by the above
sampling procedure by

⇣
gi

kgik2

⌘
m

i=1
, with m  n. If ↵n = n/n for any slowly

diverging sequence with n n, we have that m � r
d

2Rd
dn with probability at

least 1� exp(�drdn/(8Rd
)).

Final proof of Theorem 4.29

With this preliminary theory of convex polytopes setup, we now proceed to
derive an upper bound in the mean squared error for our projection estimator
projection estimator in the case where K 2 Kd is a general convex body.

Theorem 4.29 (Consistency of location estimators in the critical set, K 2 Kd.).
Let (Yi)

n

i=1 be generated according to Definition 4.4. Let bvcri denote any
location estimator lying in the critical set, i.e. bvcri 2

T
n

i=1 (Yi � �K) a.s..
We then have that bvcri satisfies kbvcri � vk2 

�C1n
n

, with probability at least
1 � 2 exp(�C2n/ polylogd(n)), where C1 := C1(d,K) and C2 := C2(d,K)

are constants which depend on the dimension d and the convex body K, n is
any slowly diverging sequence with n, and polylogd(n) is a poly-logarithmic
factor of n which also depends on the dimension d.
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Given our sampled sequence of normalized vectors
⇣

gi

kgik2

⌘
m

i=1
a correspond-

ing sequence
⇣
ci

gi

kgik2

⌘
m

i=1
of scaled boundary vectors on P := �K. Here

each boundary scaling factor ci > 0 is defined to ensure that ci
gi

kgik2
2 @(P ),

for each i 2 [m]. Indeed, by Proposition 4.96 we additionally have that
0 < r < ci < R for each i 2 [m]. On the other hand let

⇣
c
0
i

gi

kgik2

⌘
m

i=1
be the

sequence of points that are actually sampled in the shell SP,↵n
. We clearly

have (1 � ↵n)ci  c
0
i
 ci. Now, by the supporting hyperplane theorem

on closed convex sets (see (Boyd and Vandenberghe, 2004, Section 2.5.2)),
let xi be a unit vector such that hci gi

kgik2
,xii = maxz2P hz,xii (which implies

hci gi

kgik2
,xii � 0). It then follows that hci gi

kgik2
,xii � hcj gj

kgjk2
,xii for all j 2 [m].

Hence h gi

kgik2
,xii � r

R
h gj

kgjk2
,xii.

Consider the (potentially open) polytope, M given by the inequalities
hy,xii  hci gi

kgik2
,xii for each i 2 [m]. Clearly this polytope contains the set

P . Observe that the critical set is a subset of the following set

m\

i=1

✓
c
0
i

gi
kgik

� P

◆
✓

m\

i=1

✓
c
0
i

gi
kgik

�M

◆
.

We will now argue that
T

m

i=1

⇣
c
0
i

gi
kgik �M

⌘
✓ �↵nM . Consider a point y0 2

T
m

i=1

⇣
c
0
i

gi
kgik �M

⌘
. We can write y0

= c
0
i

gi
kgik � yi for any i where yi 2M for

all i 2 [m]. Hence

hy0
,xii = hc0i

gi
kgik

,xii � hyi,xii � h(c0i � ci)
gi
kgik

,xii � �↵nhci
gi
kgik

,xii,

where we used the fact that c0
i
� (1�↵n)ci and hci gi

kgik ,xii � 0. This shows that
the critical set is a subset of �↵nM . The remainder of the proof is dedicated to
showing that M is a bounded polytope. Once this is established the estimation
rate is controlled by ↵n diam (M).
In what follows we are mainly concerned with the maximum of any unit vector y,
with a vector sampled from the unit sphere ui =

gi

kgik2
i.e. infy2Sd�1 maxihy,uii

Now we have

R

r
h gi
kgik2

,xii � inf
y2Sd�1

max
i2[m]
hy,uii � f(m),

where f(m) is a high probability lower bound on infy2Sd�1 maxi2[m]hy,uii
which will be established below (see Lemma 4.98 for a precise definition of
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f(m)). We conclude that h gi

kgik2
,xii � r

R
f(m) for each i 2 [m]. Now take any

unit vector y. We now bound

max
i

hy, gi
kgik2

i � inf
y2Sd�1

max
i

hy,uii � f(m)

Hence there exists i
⇤ 2 [m] such that hy, gi⇤

kgi⇤k2
i � f(m). Consider now

p
2� 2hy,xi⇤i = ky � xi⇤k2 (since kyk2 = kxi⇤k2 = 1)


����y �

gi⇤

kgi⇤k2

����+

����
gi⇤

kgi⇤k2
� xi⇤

����
(by the triangle inequality)


p

2� 2f(m) +

r
2� 2

r

R
f(m)

By squaring and expanding both sides, we then conclude that

hy,xi⇤i � f(m)� 1 +
r

R
f(m)�

p
2� 2f(m)

r
2� 2

r

R
f(m) .

As m is substantially large the above can be made bigger than a constant (since
f(m) is very close to 1 for large m see the result below). Hence if for y 2M

we have kyk2 � C for a large enough C we will have that hy,xi⇤i will exceed R

which is a strict upper bound on hci⇤ gi⇤
kgi⇤k2

,xi⇤i, a contradiction. This means
that the polytope M will be bounded. Recall that the polytope here is given
by the inequalities hy,xii  hci gi

kgik2
,xii for each i 2 [m]).

As noted previously, we require control on the quantity infy2Sd�1 maxihy,uii.
To this end we have the following:

Lemma 4.98. Let (ui)
m

i=1
i.i.d.⇠ Unif[Sd�1

]. We then have

P
✓

inf
y2Sd�1

max
i

hy,uii � f(m)

◆
� 1� exp(�mC(d)/(2 polylogd(m))),

where f(m) = 1� 1p
logm

�3 exp(�mC(d)/(2d polylogd(m))), C(d) =
�((d�1)/2)p
⇡ �(d/2)

,
and the precise expression for the polylog factor (which also depends on d) may
be gleaned from the proof.

Proof of Lemma 4.98. Make an "-net on the unit sphere Sd�1, denoted by
N (Sd�1

, "). It is known that
��N (Sd�1

, ")
��  (1 + 2/")

d (see (Vershynin, 2018,
Corollary 4.2.13) for a proof). It follows that

��N (Sd�1
, ")

�� ⇠ (3/")
d, when

224



4.E. Proofs of Section 4.4

" 2 (0, 1). Take any y 2 Sd�1. By construction, there exists a y⇤ 2 N (Sd�1
, ")

in the net such that ky � y⇤k2  ". It then follows that:

|hy � y⇤
,u⇤

i i|  ku⇤
i k2 ky � y⇤k2 (by Cauchy-Schwartz inequality)

= ky � y⇤k2 (since ku⇤
i
k2 = 1)

 "
=) hy � y⇤

,u⇤
i i � �"

Hence if i⇤ := argmaxi2[m] hy⇤
,uii it then follows that:

hy,ui⇤i = hy⇤
,ui⇤i+ hy � y⇤

,ui⇤i
� hy⇤

,ui⇤i � " (by previous inequality)

We now select any y 2 N (Sd�1
, "). We then have the following max tail bound:

P
✓
max
i2[m]
hy,uii  t

◆
= P

 
\

i

(hy,uii  t)

!

= (P (hy,uii  t))
m

(by independence of ui, for each i 2 [m].)

Hence in order for us to have that for every element in the net the converse of
the above holds we have

P
✓

min
y2N (Sd�1,")

max
i

hy,uii > t

◆
= P

0

@
\

y2N (Sd�1,")

✓
max

i

hy,uii > t

◆1

A

= 1� P

0

@
[

y2N (Sd�1,")

✓
max

i

hy,uii  t

◆1

A

(by De Morgan’s Laws)

� 1�
X

y2N (Sd�1,")

P
✓
max

i

hy,uii  t

◆

(applying union bound)

= 1�
✓
3

"

◆
d

P (hy,uii  t)
m

(by previous max tail bound)

Now for each P (hy,uii  t) this is the probability that ui belongs to a certain
complement of a spherical cap. For volumes of spherical caps in higher dimen-
sions we use the results of (Li, 2011). Using these closed form formulas, we can
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then evaluate for values of t > 0:

P (hy,uii  t) = 1� P (hy,uii � t)

= 1�
2⇡

(d�1)/2
/�((d� 1)/2)

R
�

0 sin
d�2

(')d'

2⇡d/2/�(d/2)
,

where � is s.t. cos� = t, or in other words � = acos(t). We will now lower
bound

Z
�

0
sin

d�2
(')d' �

Z
�

�/2
sin

d�2
(')d' � sin

d�2
(�/2)�/2.

Now note that sin
2
�/2 + cos

2
�/2 = 1, and by the trigonometric identity

cos
2
�/2 = (1 + cos�)/2 = (1 + t)/2. Hence sin

2
�/2 = (1� t)/2. We conclude

that
Z
�

0
sin

d�2
(')d' � ((1� t)/2)

d/2�1
acos(t)/2.

Denote with

C(d) =
�((d� 1)/2)

⇡1/2�(d/2)
.

We have that

P (hy,uii  t)  1� C(d)((1� t)/2)
d/2�1

acos(t)/2.

Hence

P (hy,uii  t)
m  exp(�mC(d)((1� t)/2)

d/2�1
acos(t)/2)

We conclude that

P
✓

min
y2N (Sd�1,")

max
i

hy,uii � t

◆
� 1�

✓
3

"

◆
d

exp(�mC(d)((1� t)/2)
d/2�1

acos(t)/2).

Set t = 1 � 2/
p
logm . Now we us the fact that acos(1 � x) ⇡

p
2x (in fact

acos(1� x) �
p
2x ) to conclude that the above expression is bounded as

✓
3

"

◆
d

exp(�mC(d)/ polylogd(m)),

where polylogd(m) = (
p
logm )

(d�1)/2. Hence " can be selected as 3/emC(d)/ polylog
d
(m)/(2d)

and the above will still converge to 0 while "! 0 as well. We conclude that with
high probability miny2Sd�1 maxihy,uii > 1�2/

p
logm�3/emC(d)/ polylog

d
(m)/(2d)

)

which goes to 1 as m increases.
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Remark 4.99. We observe that in our proof for the upper bound for general
convex bodies K ⇢ Rd, we relied (implicitly) on the fact that d � 2. We note
that in the case d = 1, the convex body with known centroid is the compact
symmetric interval on the real line. This is simply a convex polytope in d = 1,
which is already explicitly proved for each d � 1 in Section 4.4.1.

4.E.3 Proof of Proposition 4.31

Proposition 4.31 (Consistency of the scale parameter MLE, K 2 Kd.).
Assume that the same conditions as Theorem 4.29 hold, and let G > 0 de-
note the Lipschitz constant of the Minkowski gauge functional ⇢K(x). We
then have that |b�MLE � �|  �n

n
(GC1 + 1), with probability at least 1 �

2 exp(�C2n/ polylogd(n)), where C1, C2 are as defined in Theorem 4.29.

Proof of Proposition 4.31. First, we have b�MLE := maxi2[n] ⇢K(Yi�bvMLE) and
e� := maxi2[n] ⇢K(Yi � v), respectively. Our goal is to bound the estimation
error for the scale parameter �, i.e. |b�MLE � �|. By the triangle inequality we
have |b�MLE � �|  |b�MLE � e�|+ |� � e�|. We proceed by bounding each term
separately.

It then follows from the proof of Theorem 4.29 that:

|b�MLE � e�|  G kbvMLE � vk  G�C1n

n
, (4.126)

with probability at least 1�2 exp(�C2n/ polylogd(n)), where C1 := C1(d,K)

and C2 := C2(d,K) are constants which depend on the dimension d and the
convex body K, n is any slowly diverging sequence with n, and polylogd(n)

is a poly-logarithmic factor of n which also depends on the dimension d.
In order to bound the second term, we observe that by definition of the

Gauge functional, and given that Xi is sampled from the boundary shell of P ,
we have with high probability:

(1� ↵n)�  ⇢K(Xi)  � (4.127)

Then using Theorem 4.29 we have that:

|� � e�| =
����max
i2[n]

⇢K(Xi)� �
���� (by definition of e�.)

 � � (1� n

n
)� (4.128)

 n

n
�, (4.129)
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Once again this high probability event is contained in the previous one, i.e.,
by sampling a single boundary point from the shell. Combining the above we
obtain:

|b�MLE � �|  |b�MLE � e�|+ |� � e�| (4.130)

 �n

n
(GC1 + 1) (4.131)

4.E.4 Proof of Theorem 4.32

Le Cam’s Lemma - tail probability form

Lemma 4.100 (Le Cam’s Lemma based on Tail Probability Formulation). Let
P be a set of distributions. For any distributions P, P0, P1 2 P

inf
b✓

sup

P2P
P
⇣
d(b✓, ✓(P )) � s

⌘
� 1� d

TV

 
nO

i=1

P0,

nO

i=1

P1

!
(4.132)

where ✓(P ) is some function of P , b✓ := b✓(X1, . . . , Xn), s := d(✓(P0), ✓(P1)),
for a specified metric d.

Proof of Lemma 4.100. The proof is based on standard Le Cam based minimax
lower bound arguments, e.g., Yu (1997). More specifically, the proof below is
directly adapted from Wasserman (2018, Theorem 4, Equation (9)), where it
is stated in high expectation form. For completeness, we modify this latter
argument slightly, to be based on a high probability bound instead, since this
is what we require for our purposes.

Let ✓0 := ✓ (P0) , ✓1 := ✓ (P1) and s := d (✓0, ✓1) . First suppose that n = 1

so that we have a single observation X. We then have

inf
b✓

sup

P2P
P
⇣
d(b✓, ✓(P )) � s

⌘
� ⇡

where
⇡ = inf

 

max
j=0,1

Pj( 6= j)

since a maximum is larger than an average,

⇡ = inf
 

max
j=0,1

Pj( 6= j) � inf
 

P0( 6= 0) + P1( 6= 1)

2

Define the Neyman-Pearson test

 ⇤(x) =

⇢
0 if p0(x) � p1(x)

1 if p0(x) < p1(x)
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We show that the sum of the errors P0( 6= 0) +P1( 6= 1) is minimized by  ⇤.
Now

P0 ( ⇤ 6= 0) + P1 ( ⇤ 6= 1) =

Z

p1>p0

p0(x) dx+

Z

p0>p1

p1(x) dx

=

Z

p1>p0

[p0(x) ^ p1(x)] dx+

Z

p0>p1

[p0(x) ^ p1(x)] dx =

Z
[p0(x) ^ p1(x)] dx

Thus,
P0 ( ⇤ 6= 0) + P1 ( ⇤ 6= 1)

2
=

1

2

Z
[p0(x) ^ p1(x)] dx

Thus we have shown that

inf
b✓

sup

P2P
P
⇣
d(b✓, ✓(P )) � s

⌘
�
Z

[p0(x) ^ p1(x)] dx

Now suppose we have n observations. Then, replacing p0 and p1 with
p
n

0 (x) =
N

n

i=1 p0 (xi) and p
n

1 (x) =
N

n

i=1 p1 (xi), we have

inf
b✓

sup

P2P
P
⇣
d(b✓, ✓(P )) � s

⌘
�
Z

[p
n

0 (x) ^ p
n

1 (x)] dx,

from which the result follows.

Total variation bounds on perturbed multivariate uniform distributions

First we note down various set metrics which will be useful in our analysis.
Although they are well defined for any pair of compact sets in Rd we will define
them over Kd since this restricted class is of particular interest

Definition 4.101 (Symmetric Difference Metric on Kd). Let K1,K2 2 Kd be
general convex bodies. Then the Symmetric Set Difference Metric between
{K1,K2}, i.e. 4d (K1,K2), is defined by the following equivalent formulations:

4d (K1,K2) := vold (K14K2)

= vold (K1 [K2)� vold (K1 \K2)

= vold (K1 \K2) + vold (K2 \K1)

Remark 4.102. All of these identities are equivalent by first noting the equiva-
lence of the analagous symmetric set difference identities in Rd, i.e. K14K2 :=

K1[K2 \K1\K2 = (K1 \K2)t (K2 \K1). Here t denotes a disjoint union of
sets. The volume identities in Definition 4.101 then follow directly by applying
the finite additivity of vold (·) on these symmetric set difference identities.
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4. uniform location estimation on convex bodies

In the lower bound discussion that follows our focus will be to consider
a convex body K1 2 Kd, and perturb it slightly via a translation vector
z 2 Rd \ {0}, to obtain a z-translated convex body K2 := K1 + z. Since
such a pair of z-translated convex bodies {K1,K2} are congruent, i.e. have
equal volume, they have additional structure in their symmetric difference
metric. This was claimed in (Schymura, 2014) and we formalize this notion in
Lemma 4.103. We will see that Lemma 4.103 will later help us to explicitly
upper bound the total variation distance between uniform distributions between
this pair of z-translated convex bodies.

Lemma 4.103 (Symmetric Difference between Translated Convex Bodies). Let
K1 2 Kd be a general convex body, and let K2 := K1 + z 2 Kd be a translation
of it by z 2 Rd \ {0}. Then we have the following:

vold (K1 \K2) = vold (K2 \K1) (4.133)
4d (K1,K2) = 2 vold (K1 \K2) (4.134)

Proof of Lemma 4.103. Let us fix an arbitrary z 2 Rd\{0}. Since K2 := K1+z
we have by the translation invariance of vold (·) in Rd that:

vold (K2) = vold (K1 + z) = vold (K1) (4.135)

Note that such an identity also trivially holds when z = 0. We now proceed by
observing the following the disjointification of K1 and K2, respectively:

K1 = (K1 \K2) t (K1 \K2) (4.136)
K2 = (K2 \K1) t (K1 \K2) (4.137)

Where t denotes a disjoint union. Then by finite additivity across disjoint
unions of vold (·) in Rd, applied to Equations (4.136) and (4.137) results in the
following:

vold (K1) = vold (K1 \K2) + vold (K1 \K2) (4.138)
vold (K2) = vold (K2 \K1) + vold (K1 \K2) (4.139)

We then have by taking the difference of Equations (4.136) and (4.137) and
noting that vold (K1) = vold (K2) in our case (from Equation (4.135)), implies
that:

vold (K1 \K2) = vold (K2 \K1) (4.140)
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This proves Equation (4.133). Now we finally have that:

4d (K1,K2) = vold (K1 \K2) + vold (K2 \K1) (from Definition 4.101)
=) 4d (K1,K2) = 2 vold (K1 \K2) (using Equation (4.140))

which proves Equation (4.134) as required.

Before describing lower bound results, we first derive useful results related
to probability metrics on uniform distributions over convex bodies as described
in Lemma 4.104.

Lemma 4.104 (Distances Between Translated Uniform Distributions). Let
K1 2 Kd be a general convex body, and let K2 := K1 + z 2 Kd be a translation
of it by z 2 Rd. Further let X1 ⇠ Unif[K1] and X2 ⇠ Unif[K2]. Then we have
the following:

d
TV

(X1, X2) =
1

2

✓
vold (K14K2)

vold (K1)

◆
(4.141)

=
vold (K1 \K2)

vold (K1)
(4.142)

Where d
TV

(X1, X2) and d
H
(X1, X2) are the Total Variation and Hellinger

distances between the distributions of X1 and X2, respectively.

Proof of Lemma 4.104. We first the Total Variation distance. We are given
that K1,K2 2 Kd. It then follows that Xi ⇠ Unif[Ki] () fXi

(x) =
IKi

(x)
vold (Ki)

for i 2 {1, 2}. Now we proceed with the total variance distance calculation
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directly as follows:

d
TV

(X1, X2) =
1

2

Z

Rd

|fX1(x)� fX2(x)| d�d(x) (by Scheffé’s lemma)

=
1

2

Z

Rd

����
IK1(x)

vold (K1)
� IK2(x)

vold (K2)

���� d�d(x)

(since Xi ⇠ Unif[Ki] for i 2 {1, 2})

=
1

2

Z

Rd

����
IK1(x)

vold (K1)
� IK2(x)

vold (K1)

���� d�d(x)

(since vold (K1) = vold (K2))

=
1

2

1

vold (K1)

Z

Rd

|IK1(x)� IK2(x)| d�d(x)

(since vold (K1) > 0)

=
1

2

1

vold (K1)

Z

Rd

IK14K2(x) d�d(x) (since |IA � IB| = IA4B)

=
1

2

1

vold (K1)

Z

K14K2

d�d(x)

=
1

2

✓
vold (K14K2)

vold (K1)

◆

=
vold (K1 \K2)

vold (K1)
(by Equation (4.134))

Which proves both Equation (4.141) and Equation (4.142).

We now come to the critical notion of the sweep set of a convex body
K by a vector t from (Schymura, 2014). This notion is formally stated in
Definition 4.105 and illustrated in Figure 4.E.3 (adapted from (Schymura, 2014,
Figure 1)).

Definition 4.105 (Sweep Set of a Convex Body, (Schymura, 2014)). Let
K1 2 Kd, and z 2 Rd be a translation vector. We define the sweep set of a
convex body by z, i.e. K1 + [0, 1]z, as follows:

K1 + [0, 1]z := {k1 + �z |� 2 [0, 1],k1 2 K1}

As noted in (Schymura, 2014) we have the following explicit formula for
the volume of the sweep set of a convex body under translation summarized in
Lemma 4.106.
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Figure 4.E.3: An illustration of the sweep set (shaded grey) of the convex body K by
the vector t

Lemma 4.106 (Volume of a Sweep Set of a Convex Body). Let K1 2 Kd, and
z 2 Rd be a translation vector. We then have:

vold (K1 + [0, 1]z) = vold (K1) + kzk2 vold�1

⇣
K1

��� z?
⌘

(4.143)

Where K1 | z? is the image of the orthogonal projection of K1 onto the orthog-
onal complement of z, i.e. z? :=

�
x 2 Rd

�� hx, zi = 0
 
.

Proof of Lemma 4.106. See (Gardner, 2006, Appendix A.6) for details.

Moreover this now allows us to have the necessary tools to now upper bound
the symmetric set difference of a convex body and it is translation. This idea
is mentioned in (Schymura, 2014). In particular, this allows us to upper bound
the total variation distance between two convex bodies in Rd. We formalize
these statements in Proposition 4.107.

Proposition 4.107 (Upper Bound Distances Between Translated Uniform
Distributions). Let K1 2 Kd be a general convex body, and let K2 := K1+z 2 Kd

be a translation of it by z 2 Rd. Further let X1 ⇠ Unif[K1] and X2 ⇠ Unif[K2].
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We then have:

d
TV

(X1, X2) 
vold (K14K1 + [0, 1]z)

2 vold (K1)
(4.144)

=
kzk2 vold�1

�
K1

�� z?
�

2 vold (K1)
(4.145)

Proof of Proposition 4.107. Firstly we observe that if for sets A,B,C ✓ Rd,
such that B ✓ C, we have that A4B ✓ A4C. Now since K1,K1 + z,K1 +

[0, 1]z 2 Kd with K1 + z ✓ K1 + [0, 1]z, this implies that K14(K1 + z) ✓
K14(K1 + [0, 1]z). It then follows by the monotonicty of vold (·) in Rd that:

vold (K14(K1 + z))  vold (K14(K1 + [0, 1]z)) (4.146)

We also note that since K1 = K1 + (0)z =) K1 ✓ (K1 + [0, 1]z). In fact we
then have the disjointification K1 + [0, 1]z = K1 t (K1 + (0, 1]z). By applying
finite additivity of vold (·) in Rd, we then have that: vold (K1 + [0, 1]z) =

vold (K1) + vold (K1 + (0, 1]z). Comparing this form to Lemma 4.106 and
matching terms gives us:

vold (K14(K1 + [0, 1]z)) = vold (K1 + (0, 1]z)

= kzk2 vold�1

⇣
K1

��� z?
⌘

(4.147)

Combining all of the details gives us:

d
TV

(X1, X2) =
1

2

✓
vold (K14(K1 + z)

vold (K1)

◆
(per Lemma 4.104)

 vold (K14(K1 + [0, 1]z))

2 vold (K1)
(per Equation (4.144))

=
kzk2 vold�1

�
K1

�� z?
�

2 vold (K1)
(per Equation (4.147))

Which proves both Equations (4.144) and (4.145), as required.

Lemma 4.108 (Subadditivity of Total Variation distance under indepen-
dence). We have P =

N
n

i=1 Pi and Q =
N

n

i=1Qi probability measures on
(X ,F), both being dominated by a �-finite measure µ. The corresponding
µ-densities will be called p, pi, q, qi, 8i 2 [n]. Given that d

TV
(X1, X2) =

1
2

R
Rd |p1(x)� p2(x)| d�d(x) We have that

d
TV

(P,Q) 
nX

i=1

d
TV

(Pi,Qi) (4.148)
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As a corollary, in the case when Pi,Qi are i.i.d. for each i 2 [n], we have that:

d
TV

(P,Q)  nd
TV

(P1,Q1) (4.149)

Proof of Lemma 4.108. Our proof will proceed by induction on n 2 N. We
assume the well known fact that d

TV
(·, ·) is a valid metric on the space of

probability measures, and satisfies the triangle inequality. First we observe
in the case where n = 1, we have P = P1,Q = Q1, and thus equality holds in
Equation (4.148). We will directly prove the case for n = 2. Consider:

d
TV

(P1 ⇥ P2,Q1 ⇥Q2)  d
TV

(P1 ⇥ P2,Q1 ⇥ P2)| {z }
D1

+d
TV

(Q1 ⇥ P2,Q1 ⇥Q2)| {z }
D2

(by triangle inequality on d
TV

(·, ·))

=) D1 =
1

2

Z

X

Z

X
|p1(x1)p2(x2)� q1(x1)p2(x2)| d�d(x1)d�d(x2)

=
1

2

Z

X

Z

X
p2(x2) |p1(x1)� q1(x1)| d�d(x1)d�d(x2)

=

Z

X
p2(x2)d�d(x2)

✓
1

2

Z

X
(x2) |p1(x1)� q1(x1)d�d(x1)|

◆

| {z }
d
TV

(P1,Q1)

= d
TV

(P1,Q1)

Similarly D2 = d
TV

(P2,Q2) (4.150)
=) d

TV
(P1 ⇥ P2,Q1 ⇥Q2)  d

TV
(P1,Q1) + d

TV
(P2,Q2) (4.151)

As required. Now we assume our induction hypothesis, i.e. for all n  k 2 N,
the following holds:

d
TV

 
kO

i=1

Pi,

kO

i=1

Qi

!


kX

i=1

d
TV

(Pi,Qi) (4.152)
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Now consider the case for n = k + 1:

d
TV

 
k+1O

i=1

Pi,

k+1O

i=1

Qi

!
= d

TV

 
kO

i=1

Pi ⇥ Pk+1,

kO

i=1

Qi ⇥Qk+1

!

= d
TV

 
kO

i=1

Pi,

kO

i=1

Qi

!
+ d

TV
(Pk+1,Qk+1)


kX

i=1

d
TV

(Pi,Qi) + d
TV

(Pk+1,Qk+1)

=

k+1X

i=1

d
TV

(Pi,Qi)

As required.

Lemma 4.109 (Orthogonal Projections on Closed Subspace is Continuous).
The orthogonal projection operator i.e. ⇧K(x) := argmin

w2K
kx�wk2 on a Closed

Convex Subspace in K ✓ Rd is 1-Lipschitz (and thus uniformly continuous)
with respect to the Euclidean Metric.

Proof of Lemma 4.109. See (Deutsch, 2001, Theorem 5.5) for details.

Lemma 4.110 (Scale invariance of orthogonal projections on Closed Subspace).
Let K 2 Kd, then for any fixed � > 0, and any fixed z 2 Sd�1, the following
holds:

⇣
�K | z?

⌘
= �

⇣
K | z?

⌘
(4.153)

Proof of Lemma 4.110. We will prove the equality of the sets directly as follows.

Let x 2
⇣
�K | z?

⌘
(by definition)

() 9 k 2 K : x = ⇧�K|z?(�k) (Using Equation (4.49))

() 9 k 2 K : x = �⇧K|z?(k)

() x 2 �
⇣
K | z?

⌘

As required.
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Since we are in a finite dimensional setting, we note that the orthogonal
projection z? :=

�
y 2 Rd

�� hy, zi = 0
 

is a closed subspace of Rd As such
K1 | z? is the image of the orthogonal projection of K1 onto the orthogonal
complement of z. Since orthogonal projections are continuous maps, and
K 2 Kd is compact set, we have that compactness is preserved by continuous
maps.

Final proof of Theorem 4.32

Now we are ready to formulate and prove the lower bound rate. This is
summarized below.

Theorem 4.32 (Minimax lower bound for location estimation). Let (Yi)
n

i=1
be generated according to Definition 4.4, with � known to the observer. Let bv,
be any estimator (measurable function) for the location parameter v. We then
have that the following holds:

inf
bv

sup

v2Rd

P
 
kbv � vk2 � sup

z2Sd�1

� vold (K)

n vold�1 (K | z?)

!
� 1

2
. (4.18)

Here K | z? is the image of the orthogonal projection of K onto the orthogonal
complement of z. Note that z? :=

�
x 2 Rd

�� hx, zi = 0
 
, i.e., the hyperplane

through 0 2 Rd, with z 2 Rd as a normal vector.

Let K1 = v + �K, where K 2 Kd. We then consider a perturbation of K1

by a translation vector z 2 Rd \ {0}. This results in a z-translated convex body
K2 := K1 + z. i.e. K2 = v + z + �K. It is clear that K2 2 Kd. Further we
denote P1 ⇠ Unif[K1] and P2 ⇠ Unif[K2]. With this setup, we are now ready
to apply Le Cam’s Two Point method to construct our lower bound. This is
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done as follows:

inf
bv

sup

v2Rd

P (kbv � vk2 � kzk2) � 1� d
TV

 
nO

i=1

P1,

nO

i=1

P2

!

(using Equation (4.132))
� 1� nd

TV
(P1, P2) (using Equation (4.149))

� 1�
n kzk2 vold�1

�
K1

�� z?
�

2 vold (K1)

(from Equation (4.145))

= 1�
✓
n kzk2

2

◆ 
vold�1

�
K1

�� z?
�

vold (K1)

!

= 1�
✓
n kzk2

2

◆ 
vold�1

�
�K

�� z?
�

vold (�K)

!

= 1�
✓
n kzk2

2

◆ 
vold�1

�
�
�
K
�� z?

��

vold (�K)

!

= 1�
✓
n kzk2

2

◆ 
�
d�1

vold�1

�
K
�� z?

�

�d vold (K)

!

= 1�
 
n vold�1

�
K
�� z?

�
kzk2

2� vold (K)

!

(for all z 2 Rd \ {0})

We then observe that for any fixed z 2 Rd \ {0}, that vold�1

�
K
�� z?

�
is

bounded. This follows because the projection operator is (uniformly continuous)
using Lemma 4.109, and given K 2 Kd is compact (by definition), it follows
that the image under the continuous projection operator preserves compactness.
In our finite dimensional setting, this indeed means that vold�1

�
K
�� z?

�
is

bounded. Now we finally observe that we can choose z such that vold�1

�
K
�� z?

�

is minimal across all possible directions. Then by choosing z such that kzk2 =

� vold (K)

n vold�1 (K | z?) implies that we lower bound our minimax risk away from 0.
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4.F Proofs of Section 4.5

In order to ensure to bound the subgradients of the Minkowski gauge functional,
we first need Lemma 4.111.

Lemma 4.111 (Bounded dual norm of subgradient of Lipschitz functions).
Let S ✓ Rd be non-empty, and f : S ! R be a convex function. Then, f is
L-Lipschitz over S with respect to a norm k·k iff for all w 2 S and z 2 @f(w)

we have that kzk
?
 L, where k·k

?
is the dual norm of k·k.

Proof of Lemma 4.111. See Shalev-Shwartz et al. (2012, Lemma 2.6) for details.

Lemma 4.34 (Bounded subgradient of ⇢K(x)). Let G > 0 be the Lipschitz con-
stant for the Minkowski gauge functional, ⇢K(x), as defined in Definition 4.24.
Then for any w 2 Rd, and for any z 2 @ (⇢K(w)), we have kzk2  G.

Proof of Lemma 4.34. We recall that Minkowski functional is convex, and G-
Lipschitz, and that the dual norm of k·k2 in Rd is k·k2. As such, it follows
from Lemma 4.111 that for any w 2 Rd, and for any z 2 @ (⇢K(w)), we have
kzk2  G.

Proposition 4.36 (Convergence of subgradient method). Suppose that there
exist constants R,G > 0 with

��x(0) � x?
��
2
 R,

��x(0) � v
��
2
 R, and��g(k)

��
2
 G for all k. Where x? is the unique optimal solution, then running

Algorithm 4.1 ensures that

kv � x(L)
bestk2 � kv � x?k2 

R
2
+G

2PL

k=1 t
2
k

2
P

L

k=1 tk

(4.34)

Proof of Proposition 4.36.

4.F.1 Proof of Proposition 4.35

Proposition 4.35 (Subgradient of ⇢K(x)). Let K 2 Kd with 0 2 int (K). Let
⇢K(x) be it is Minkowski gauge functional, for all x 2 Rd. Further, let x0 be
the vector that is parallel to x and lies on the boundary of K, and let x0⇤ be
any supporting hyperplane through x0. Then x0⇤

x0⇤>x0 is a subgradient at x0.

Proof of Proposition 4.35. We now show how to find a subgradient of ⇢K(x)
provided that we have a supporting hyperplane oracle to K. By the definition
of a subgradient we need to identify g such that

g>
(x� y) � ⇢K(x)� ⇢K(y)
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This is implied if g satisfies the following two properties

g>x = ⇢K(x), and g>y  ⇢K(y), for all y

or equivalently

g>x/⇢K(x) = 1, and g>y/⇢K(y)  1, for all y

Now, let x0 be the vector that is parallel to x and lies on the boundary of K
i.e. x0

= x/⇢K(x). We then have ⇢K(x0
) = 1. Take any supporting hyperplane

through that vector, x0⇤, and normalize it g = x0⇤
/x0⇤>

x
0 (note here that the

dot product x0⇤>x0
> 0 since x0⇤>x0

> x0⇤>0 = 0 (the inequality is strict as 0
is an interior point of K hence cannot be on the supporting hyperplane) since
0 2 K). We argue that this is a subgradient of ⇢K(x). We have

g>x0
= 1,g>y0  g>x0

= 1, for all y0 2 K.

The last inequality includes all boundary points of K which are all points y0

such that ⇢K(y0
) = 1. This is exactly what we wanted to show.

4.F.2 Proof of Theorem 4.39

Theorem 4.39. If you run the subgradient descent in Algorithm 4.2, such that
the RHS in (4.36) is at most C

n
for some sufficiently small C > 0, then

kx(L)
best � vk2 .

1

n
, (4.37)

with high probability (say .99).

Proof of Theorem 4.39. In our proof for the general convex body (with known
�) in Section 4.4.2 we look at the thin shell set �K \ (1 � ↵n)�K. Suppose
instead we consider the positively (slightly) dilated version of our original
convex body i.e. �

�
1 +

1
n

�
K. Then the thin strips we look at will be slightly

bigger but will be still at the order of ↵n ⇡ 1/n, because 1 + 1/n� (1� ↵n) is
still of the order of ↵n. So in our convex body proof, we can still sample from
the original shell �K \ (1� ↵n)�K. However instead of extending the vector
from 0 to the boundary of @(�K) we extend it to @�

�
1 +

1
n

�
K instead. We

draw our supporting hyperplanes to the convex set �
�
1 +

1
n

�
K and the proof

proceeds as for the case of the convex body �K per Section 4.4.2. It follows
that since � is a positive constant (by assumption), we can always find the
optimal rate by moving within C/n to the optimal value of the function (i.e.
obtain a value that is e� = b� + C/n  �(1 + 1/n)).
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Five

Conclusion

Recall that the motivating theme of this thesis is to generalize three ‘classical’
nonparametric, and location-scale (parametric) estimation problems in statistics.
We now conclude by summarizing our key findings below, and then describing
some exciting future research directions of interest.

Part I Nonparametric Estimation

In Chapter 2 we derived exact (up to constants) minimax rates for density
estimation over convex density classes. Our work builds on seminal research of
Le Cam (1973); Birgé (1983); Yang and Barron (1999); Wong and Shen (1995).
More directly, we non-trivially adapted the techniques of Neykov (2022), who
used it for deriving exact rates for the Gaussian sequence model. There, the
generating process has a vastly differing geometric structure to our density
estimation setting, thus requiring new techniques to be used. Our upper bounds
are based on a ‘multistage sieve’ MLE, which works across any convex density
class. This estimator can be constructively described via a finite-step (i.e.,
‘multistage’) procedure, where we successively take the MLE on structured
subsets (i.e., ‘sieves’) of our convex density class. Our results demonstrate
that the L2-local metric entropy always determines that minimax rate under
squared L2-loss in this setting. This provides a unifying minimax density
estimation perspective across parametric and nonparametric convex density
classes. Importantly, our results generalize the seminal work of Yang and
Barron (1999), since they are proven under weaker assumptions.

An important open direction that we would like to explore is whether there
exists a computationally tractable estimator which is also minimax optimal
in our density estimation setting. Recall that our ‘multistage sieve’ MLE,
although provably minimax optimal over any abstract convex density class,
is not designed to be practically computable. Another natural question is
whether we can apply our techniques to the nonparametric regression setting
(with Gaussian noise), for estimating a uniformly bounded regression function
of interest. Finally, we hope that this research stimulates further activity in
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5. conclusion

approximation theory, i.e., specifically for deriving the L2-local metric entropy
for various convex density classes. We leave these promising directions for
future work.

In Chapter 3 we considered a partial generalization of the classical isotonic
regression setup in which the observations can be adversarially sign-corrupted.
Under this adversarially sign-corrupted isotonic (ASCI) setting, ‘adversarially’
refers to the fact that the sign-corruptions may be chosen to have strong
dependence with the error terms in the original model. Our motivation was to
understand whether robust estimation of the true isotonic regression signal was
feasible, under such harsh ‘attacks’ on the monotonicity of the observations.
Our simple three-step estimation procedure, ASCIFIT, is easy to implement
with existing software. It also has sharp non-asymptotic minimax guarantees
on the estimation error, in high probability under squared L2-loss.

A key restriction of our setting is that that true monotone signal is assumed
to be strictly positive for our guarantees to hold. We believe this restriction can
be lifted if one uses unimodal regression instead of isotonic regression in Step

I of ASCIFIT. Lifting this positivity assumption will ensure that the resulting
ASCI setup would be a complete generalization of classical isotonic regression,
with non-asymptotic minimax estimation guarantees. However, one would
need to first establish sharp risk guarantees similar to Zhang (2002) under this
unimodal setting. It would also be interesting to see if the moment matching
technique could be extended subgaussian error terms. We leave these exciting
directions for future work.

Part II Location-scale estimation

In Chapter 4 we generalize the classical problem of univariate uniform
location estimation over an interval, to multivariate uniform location estimation
over convex bodies, i.e., K 2 Kd. We consider both known and unknown scaling
regimes, with the latter case being the more challenging estimation setting.
Even in the (easier) known scaling regime we demonstrate a fundamental trade-
off arising between the statistical optimality and the computational feasibility
of estimation in general settings. Motivated by this trade-off we propose
projection-based location estimator in the known scaling regime, and also show
how to obtain location-scale MLEs in the unknown scaling regimes. All of
these proposed estimators lie in region we term the critical set. Furthermore,
we demonstrate that any location estimator lying in the critical set converges
at a rate of C(d,K)

n
with high probability, under squared L2-loss. These rates

are supported with matching minimax lower bounds in sample complexity. We
also provide feasible algorithms with provable guarantees for our proposed
estimators over more general settings compared to known estimators.
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This opens up many exciting directions for further exploration in location-
scale estimation. For example, our upper bounds hold for any estimator in
the critical set, and as such are likely suboptimal in the dimension dependent
constant C(d,K) compared to the minimax lower bounds. These could be
tightened further by exploiting the convex-geometric structure of each individual
estimator. Performing inference on these uniform location-scale parameters of
interest is another open problem. A promising approach could be to extend
the techniques from Wasserman et al. (2020) to our (non-regular) multivariate
uniform setting. We also believe that our upper bounds techniques can achieve
similar risk convergence rates when the underlying distribution is non-uniform
over K 2 Kd, provided that the underlying density is suitably bounded away
from zero in probability over the entire boundary of the convex body supporting
set K. We defer demonstrating this conjecture, and the above open problems
to future work.

Overall, our work focused in generalizing various classical models and
estimators, and understanding their theoretical properties. The topics spanned
density estimation, isotonic regression, and also uniform location (and scale)
estimation. Our work demonstrates that we can still continue to gain new
inferential insights in these classical settings. Importantly we hope it stimulates
further research into these (and related) classical topics.

243





Bibliography

Ayer, M., Brunk, H. D., Ewing, G. M., Reid, W. T., and Silverman, E. (1955).
An empirical distribution function for sampling with incomplete information
. Ann. Math. Statist., 26:641–647.

Balakrishnan, S., Wainwright, M. J., and Yu, B. (2017). Statistical guarantees
for the EM algorithm: from population to sample-based analysis . Ann.
Statist., 45(1):77–120.

Baldi, P., Kerkyacharian, G., Marinucci, D., and Picard, D. (2009). Adap-
tive density estimation for directional data using needlets. Ann. Statist.,
37(6A):3362–3395.

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972).
Statistical inference under order restrictions. The theory and application of
isotonic regression . Wiley Series in Probability and Mathematical Statistics.
John Wiley & Sons, London-New York-Sydney.

Barron, A. R. and Cover, T. M. (1991). Minimum complexity density estimation.
IEEE Trans. Inform. Theory, 37(4):1034–1054.

Bartholomew, D. J. (1959a). A test of homogeneity for ordered alternatives.
Biometrika, 46(1-2):36–48.

Bartholomew, D. J. (1959b). A test of homogeneity for ordered alternatives. II.
Biometrika, 46:328–335.

Bellec, P. C. (2018). Sharp oracle inequalities for least squares estimators in
shape restricted regression . Ann. Statist., 46(2):745–780.

Bellec, P. C. and Tsybakov, A. B. (2015). Sharp oracle bounds for monotone and
convex regression through aggregation . J. Mach. Learn. Res., 16:1879–1892.

245



bibliography

Best, M. J. and Chakravarti, N. (1990). Active set algorithms for isotonic
regression; a unifying framework. Math. Programming, 47(3, (Ser. A)):425–
439.

Bickel, P. J. and Doksum, K. A. (2016). Mathematical statistics—basic ideas
and selected topics. Vol. 2. Texts in Statistical Science Series. CRC Press,
Boca Raton, FL, second edition.

Bilodeau, B., Foster, D. J., and Roy, D. M. (2021). Minimax Rates for
Conditional Density Estimation via Empirical Entropy. arXiv:2109.10461.

Birgé, L. (1983). Approximation dans les espaces métriques et théorie de
l’estimation . Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebi-
ete, 65(2):181–237.

Birgé, L. (1986). On estimating a density using Hellinger distance and some
other strange facts . Probab. Theory Relat. Fields, 71(2):271–291.

Birgé, L. (2014). Model selection for density estimation with L2-loss. Probab.
Theory Related Fields, 158(3-4):533–574.

Birgé, L. and Massart, P. (1993a). Rates of convergence for minimum contrast
estimators. Probab. Theory Related Fields, 97(1-2):113–150.

Birgé, L. and Massart, P. (1993b). Rates of convergence for minimum contrast
estimators. Probab. Theory Related Fields, 97(1-2):113–150.

Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves:
exponential bounds and rates of convergence . Bernoulli, 4(3):329–375.

Birman, M. S̆. and Solomjak, M. Z. (1980). Quantitative analysis in Sobolev
imbedding theorems and applications to spectral theory , volume 114 of Amer-
ican Mathematical Society Translations, Series 2. American Mathematical
Society, Providence, R.I. Translated from the Russian by F. A. Cezus.

Blum, A., Hopcroft, J., and Kannan, R. (2020). Foundations of Data Science.
Cambridge University Press.

Boyd, D. W. and Steele, J. M. (1978). Lower bounds for nonparametric density
estimation rates. Ann. Statist., 6(4):932–934.

Boyd, S. and Park, J. (2014). Subgradient methods. lecture notes of EE364b,
Stanford University, Spring Quarter.

246



Bibliography

Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge
University Press, Cambridge.

Boyle, J. P. and Dykstra, R. L. (1986). A method for finding projections
onto the intersection of convex sets in Hilbert spaces . In Advances in order
restricted statistical inference (Iowa City, Iowa, 1985), volume 37 of Lect.
Notes Stat., pages 28–47. Springer, Berlin.

Bretagnolle, J. and Huber, C. (1979). Estimation des densités: risque minimax.
Z. Wahrsch. Verw. Gebiete, 47(2):119–137.

Brezis, H. (2011). Functional analysis, Sobolev spaces and partial differential
equations. Universitext. Springer, New York.

Brøndsted, A. (1983). An introduction to convex polytopes, volume 90 of
Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin.

Brunk, H. D. (1955). Maximum likelihood estimates of monotone parameters.
Ann. Math. Statist., 26:607–616.

Chatterjee, S. (2014). A new perspective on least squares under convex con-
straint. Ann. Statist., 42(6):2340–2381.

Chatterjee, S., Guntuboyina, A., and Sen, B. (2015). On risk bounds in
isotonic and other shape restricted regression problems . Ann. Statist.,
43(4):1774–1800.

Cleanthous, G., Georgiadis, A. G., Kerkyacharian, G., Petrushev, P., and
Picard, D. (2020). Kernel and wavelet density estimators on manifolds and
more general metric spaces . Bernoulli, 26(3):1832–1862.

de Leeuw, J., Hornik, K., and Mair, P. (2009). Isotone Optimization in
R: Pool-Adjacent-Violators Algorithm (PAVA) and Active Set Methods .
Journal of Statistical Software, 32(5):1–24.

De Loera, J. A., Rambau, J., and Santos, F. (2010). Triangulations, volume 25
of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin.
Structures for algorithms and applications.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood
from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B,
39(1):1–38. With discussion.

247



bibliography

Deutsch, F. (1985). Rate of convergence of the method of alternating projections.
In Parametric optimization and approximation (Oberwolfach, 1983), vol-
ume 72 of Internat. Schriftenreihe Numer. Math., pages 96–107. Birkhäuser,
Basel.

Deutsch, F. (2001). Best approximation in inner product spaces, volume 7
of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC.
Springer-Verlag, New York.

Devroye, L. (1983). On arbitrarily slow rates of global convergence in density
estimation. Z. Wahrsch. Verw. Gebiete, 62(4):475–483.

Devroye, L. (1987). A course in density estimation, volume 14 of Progress in
Probability and Statistics. Birkhäuser Boston, Inc., Boston, MA.

Devroye, L. and Györfi, L. (1985). Nonparametric density estimation. Wiley
Series in Probability and Mathematical Statistics: Tracts on Probability and
Statistics. John Wiley & Sons, Inc., New York. The L1 view.

Donoho, D. L. (1990). Gelfand n-widths and the method of least squares.
Preprint.

Efromovich, S. (2008). Adaptive estimation of and oracle inequalities for
probability densities and characteristic functions . Ann. Statist., 36(3):1127–
1155.
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A

Data and Code Availability

A.1 Data and Code Availability

In order to reproduce the simulation results in Chapters 3 and 4, we note the
following:

• Data and code used for the analysis in Chapter 3 is available online at:
https://github.com/shamindras/ascifit

• Data and code used for the analysis in Chapter 4 is available online at:
https://github.com/shamindras/ule

257

https://github.com/shamindras/ascifit
https://github.com/shamindras/ule

	sshrotri_phd_statds_2022 - signature page
	sshrotri_phd_statds_2022
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Organization of the thesis
	1.2 Overview of the three core problems
	1.3 A note on stylistic conventions used in this thesis

	I Nonparametric estimation
	2 Revisiting Le Cam's Equation: Exact Minimax Rates over Convex Density Classes
	2.1 Introduction
	2.1.1 Relevant Literature
	2.1.2 Notation
	2.1.3 Organization

	2.2 Minimax Lower and Upper Bounds
	2.2.1 Minimax Lower Bound
	2.2.2 Upper Bound
	2.2.3 Adaptivity

	2.3 Examples
	2.4 Discussion
	2.5 Acknowledgments

	 Appendix - Chapter 2
	2.A Preliminary
	2.A.1 Notation Summary
	2.A.2 Properties of cFalphabetaB
	2.A.3 Elementary inequalities

	2.B Proofs of section 2.2
	2.B.1 Proof of Lemma 2.5
	2.B.2 Proof of Lemma 2.11
	2.B.3 Proof of Lemma 2.13
	2.B.4 Proof of Lemma 2.14
	2.B.5 Proof of Lemma 2.15
	2.B.6 Proof of Proposition 2.18
	2.B.7 Proof of Theorem 2.19
	2.B.8 Proof of Theorem 2.20
	2.B.9 Proof of Proposition 2.22
	2.B.10 Proof of Theorem 2.24

	2.C Proofs of section 2.3
	2.C.1 Formal justification for Example 2.25
	2.C.2 Formal justification for Example 2.26
	2.C.3 Formal justification for Example 2.27
	2.C.4 Formal justification for Example 2.28


	3 Adversarial Sign-Corrupted Isotonic Regression
	3.1 Introduction
	3.1.1 Adversarial sign-corrupted isotonic (ASCI) regression
	3.1.2 Interesting special cases of ASCI regression
	3.1.3 Motivation and focus of our work
	3.1.4 Prior and related work
	3.1.5 Main contributions
	3.1.6 Organization of the paper
	3.1.7 Notation

	3.2 ASCIFIT: A three-step estimation procedure for mu
	3.2.1 Intuition for the three ASCIFIT steps

	3.3 Analysis of ASCIFIT: Upper bounds
	3.4 Lower bounds
	3.5 Simulations
	3.6 Conclusion
	3.7 Acknowledgments

	 Appendix - Chapter 3
	3.A Preliminary
	3.A.1 Notation Summary
	3.A.2 Useful miscellaneous results
	3.A.3 The Folded Normal Distribution
	3.A.4 Properties of the folded normal mean: fmusigma
	3.A.5 Properties of the folded normal variance: gmusigma
	3.A.6 Properties of the inverse folded normal mean: finvmusigma
	3.A.7 Properties of: jsigma
	3.A.8 Properties of: gsigma

	3.B Proofs of section 3.1
	3.B.1 Mathematical Preliminaries
	3.B.2 Important Model Definitions
	3.B.3 Formal justification for Example 3.5
	3.B.4 Formal justification for Example 3.7

	3.C Proofs of section 3.2
	3.C.1 Mathematical Preliminaries
	3.C.2 Proof of Proposition 3.11

	3.D Proofs of section 3.3
	3.D.1 Mathematical Preliminaries
	3.D.2 Proof of Theorem 3.12
	3.D.3 Proof of Theorem 3.13
	3.D.4 Proof of Equation 3.D.4

	3.E Proofs of section 3.4
	3.E.1 Mathematical Preliminaries
	3.E.2 Proof of Proposition 3.51
	3.E.3 Proof of Proposition 3.16



	II Location-Scale Estimation
	4 Uniform Location Estimation on Convex Bodies
	4.1 Introduction
	4.1.1 Multivariate uniform location estimation on convex bodies
	4.1.2 Prior and related work
	4.1.3 Main contributions
	4.1.4 Organization of the paper
	4.1.5 Notation

	4.2 Location estimation (known sigma regime)
	4.2.1 Parameter identifiability
	4.2.2 The critical set and its geometric properties
	4.2.3 Multivariate Pitman location estimator: vestpit
	4.2.4 Sample mean as a location estimator: vestsampmean
	4.2.5 Naive strategy - the marginal uniform projection estimator: vestmarg
	4.2.6 Our projection location estimator: vestprj

	4.3 Location-scale estimation (unknown sigma regime)
	4.4 Upper and lower bounds
	4.4.1 Upper bounds warm-up: convex polytopes in realsd
	4.4.2 Upper bounds: general convex bodies in realsd
	4.4.3 Lower bounds

	4.5 Algorithmic Implementation
	4.5.1 Subgradients of the Minkowski gauge functional
	4.5.2 Algorithmic implementation (bfv unknown, sigma known)
	4.5.3 Algorithmic Implementation (bfv unknown, sigma unknown)
	4.5.4 Accounting for varepsilon-suboptimality of the subgradient method
	4.5.5 Estimating location-scale parameters of convex polytopes

	4.6 Simulations
	4.7 Discussion
	4.8 Acknowledgments

	 Appendix - Chapter 4
	4.A Preliminary
	4.A.1 Notation Summary
	4.A.2 Required convex analysis and convex geometry results
	4.A.3 Useful miscellaneous results

	4.B Proofs of section 4.1
	4.B.1 Formal justification for thetaestmle with unknown scale parameter
	4.B.2 Proof of Proposition 4.7

	4.C Proofs of section 4.2
	4.C.1 Proof of Theorem 4.9
	4.C.2 Final proof of Theorem 4.9
	4.C.3 Proof of Corollary 4.11
	4.C.4 Formal justification for Remark 4.12
	4.C.5 Proof of Proposition 4.8
	4.C.6 Proof of Proposition 4.13
	4.C.7 Proof of Proposition 4.14
	4.C.8 Formal justification for Remark 4.15
	4.C.9 Proof of Proposition 4.20
	4.C.10 Proof of Theorem 4.21
	4.C.11 Final proof of Theorem 4.21
	4.C.12 Proof of Proposition 4.22

	4.D Proofs of section 4.3
	4.D.1 Proof of Theorem 4.25
	4.D.2 Proof of Proposition 4.27

	4.E Proofs of section 4.4
	4.E.1 Proof of Theorem 4.28
	4.E.2 Proof of Theorem 4.29
	4.E.3 Proof of Proposition 4.31
	4.E.4 Proof of Theorem 4.32

	4.F Proofs of section 4.5
	4.F.1 Proof of Proposition 4.35
	4.F.2 Proof of Theorem 4.39


	5 Conclusion
	Bibliography
	A Data and Code Availability
	A.1 Data and Code Availability




